基于RNA-seq技术研究埃可病毒30型感染RD细胞前后的差异表达基因Exploration of Differentially Expressed Genes Before and After Infection with Echovirus 30 Based on RNA-sequencing
李冀琛;张国艳;张珂艺;杨倩;刘志军;孙强;张勇;
摘要(Abstract):
埃可病毒30型(Echovirus 30,E30)是一种全球传播的B组肠道病毒,常与无菌性脑膜炎等疾病暴发有关,分析E30在感染人横纹肌肉瘤(Human rhabdomyosarcoma,RD)细胞前后的差异表达基因有助于了解该病毒的复制周期以及宿主感染机制。本研究通过转录组测序技术探究E30感染RD细胞前后的基因表达谱变化,共检测到的1 281个差异表达基因,其中包括730个下调基因和551个上调基因。基因本体论(Gene Ontology,GO)和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析表明,显著差异表达基因主要参与细胞受体信号通路的调节、炎症反应、免疫细胞活化、调控细胞生命周期等。利用荧光定量PCR(Realtime quantitative PCR,qPCR)对其中9个与炎症和免疫反应相关的差异表达基因进行验证,发现DEAD-box解旋酶3(DEAD-box RNA helicase 3,DDX3)表达上调,这与转录组学分析一致。利用RK-33(DDX3的小分子抑制剂)靶向抑制DDX3的表达,发现RK-33能够抑制E30的复制,并且qPCR结果显示在抑制DDX3的表达后,GTP酶激活蛋白结合蛋白1(GTPase-activating protein-binding protein1,G3BP1)和干扰素调节因子3(Interferon Regulatory Factor 3,IRF3)的表达也出现不同程度地降低。本研究的结果提示DDX3表达可能影响E30复制,这一发现为进一步探索E30在感染宿主过程中的分子机制奠定基础。
关键词(KeyWords): 埃可病毒30型;RNA-seq;DEAD-box解旋酶3(DDX3);差异表达基因;人横纹肌肉瘤(RD)细胞
基金项目(Foundation): 北京市自然科学基金(项目号:L192014);; 国家自然科学基金青年科学基金项目(项目号:31900140);; 国家重点研发计划(项目号:2021YFC0863000);; 山东省自然科学基金(项目号:ZR2019MC059)~~
作者(Authors): 李冀琛;张国艳;张珂艺;杨倩;刘志军;孙强;张勇;
DOI: 10.13242/j.cnki.bingduxuebao.004081
参考文献(References):
- [1] Broberg E K,Simone B,Jansa J,The Eu/Eea Member State C. Upsurge in echovirus 30 detections in five EU/EEA countries,April to September,2018[J]. Euro Surveill,2018,23(44).
- [2] McWilliam Leitch E C, Bendig J, Cabrerizo M,Cardosa J,Hyypia T,Ivanova O E,Kelly A,Kroes A C,Lukashev A,MacAdam A,McMinn P,Roivainen M,Trallero G,Evans D J,Simmonds P. Transmission networks and population turnover of echovirus 30[J]. J Virol,2009,83(5):2109-2118.
- [3] Chen J,Han Z,Wu H,Xu W,Yu D,Zhang Y. A Large-Scale outbreak of echovirus 30 in gansu province of China in 2015 and its phylodynamic characterization[J]. Front Microbiol,2020,11:1137.
- [4] Love M I,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol,2014,15(12):550.
- [5] Kanehisa M,Furumichi M,Sato Y,Ishiguro-Watanabe M,Tanabe M. KEGG:integrating viruses and cellular organisms[J]. Nucleic Acids Res,2021,49(D1):D545-D551.
- [6] Jin J,Li R,Jiang C,Zhang R,Ge X,Liang F,Sheng X, Dai W, Chen M, Wu J, Xiao J, Su W.Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells[J]. BMC Genomics,2017,18(Suppl 1):933.
- [7] Hu Y,Xu Y,Deng X,Wang R,Li R,You L,Song J,Zhang Y. Comprehensive analysis of the circRNA expression profile and circRNA-miRNA-mRNA network in the pathogenesis of EV-A71 infection[J].Virus Res,2021,303:198502.
- [8] Linder P,Jankowsky E. From unwinding to clampingthe DEAD box RNA helicase family[J]. Nat Rev Mol Cell Biol,2011,12(8):505-516.
- [9] Hilbert M, Karow A R, Klostermeier D. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins[J]. Biol Chem,2009,390(12):1237-1250.
- [10]Linder P,Lasko P F,Ashburner M,Leroy P,Nielsen P J,Nishi K,Schnier J,Slonimski P P. Birth of the D-E-A-D box[J]. Nature,1989,337(6203):121-122.
- [11]Schroder M. Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation[J]. Biochem Pharmacol,2010,79(3):297-306.
- [12]Soto-Rifo R,Ohlmann T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism[J]. Wiley Interdiscip Rev RNA,2013,4(4):369-385.
- [13]Angus A G,Dalrymple D,Boulant S,McGivern D R,Clayton R F, Scott M J, Adair R, Graham S,Owsianka A M,Targett-Adams P,Li K,Wakita T,McLauchlan J,Lemon S M,Patel A H. Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein[J].J Gen Virol,2010,91(Pt 1):122-132.
- [14]Soto-Rifo R,Rubilar P S,Ohlmann T. The DEAD-box helicase DDX3 substitutes for the cap-binding protein eIF4E to promote compartmentalized translation initiation of the HIV-1 genomic RNA[J]. Nucleic Acids Res,2013,41(12):6286-6299.
- [15]Fullam A,Schroder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication[J]. Biochim Biophys Acta,2013,1829(8):854-865.
- [16]Soulat D, Burckstummer T, Westermayer S,Goncalves A,Bauch A,Stefanovic A,Hantschel O,Bennett K L,Decker T,Superti-Furga G. The DEADbox helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response[J]. EMBO J,2008,27(15):2135-2146.
- [17]Thulasi Raman S N,Liu G,Pyo H M,Cui Y C,Xu F,Ayalew L E,Tikoo S K,Zhou Y. DDX3 interacts with influenza a virus ns1 and np proteins and exerts antiviral function through regulation of stress granule formation[J]. J Virol,2016,90(7):3661-3675.
- [18]Matsumoto M,Funami K,Tatematsu M,Azuma M,Seya T. Assessment of the Toll-like receptor 3 pathway in endosomal signaling[J]. Methods Enzymol,2014,535:149-165.
- [19]Oshiumi H,Ikeda M,Matsumoto M,Watanabe A,Takeuchi O,Akira S,Kato N,Shimotohno K,Seya T.Hepatitis C virus core protein abrogates the DDX3function that enhances IPS-1-mediated IFN-beta induction[J/OL]. PLoS One,2010,5(12):e14258.