nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 06 v.40 1453-1461
MOV10在细胞生物学与抗病毒功能中的研究进展
基金项目(Foundation): 吉林省自然科学基金(项目号:20230101172JC),题目:天然免疫限制因子MOV10限制狂犬病病毒复制的分子机制研究~~
邮箱(Email): zhanghaili@jlu.edu.cn;
DOI: 10.13242/j.cnki.bingduxuebao.004598
中文作者单位:

吉林大学动物医学学院人畜共患传染病重症诊治全国重点实验室;

摘要(Abstract):

莫洛尼白血病病毒10(Moloney leukemia virus 10, MOV10)是一种广泛存在于生物中的RNA解旋酶,是DICER-AGO介导的miRNA通路中无膜细胞器P-Bodies的重要组成蛋白,在肿瘤侵袭、胚胎发育、转座子逆转录等方面发挥作用。近年来又发现,MOV10可作为天然免疫限制因子,在病毒感染过程中,通过自身的结构特征或者参与到干扰素通路等方式来调控病毒的复制。本文主要阐述了MOV10的发现、结构特征、生物学功能,重点综述了MOV10在抗病毒功能方面的相关作用与机制,以期为MOV10抗病毒机制的阐明及今后的研究方向提供一定的参考。

关键词(KeyWords): MOV10;miRNA通路;抗病毒机制
参考文献 [1] Nawaz A, Shilikbay T, Skariah G, et al. Unwinding the roles of RNA helicase MOV10[J]. Wiley Interdiscip Rev RNA, 2022, 13(2):e1682. DOI:10. 1002/wrna. 1682.
[2] Mooslehner K, Müller U, Karls U, et al. Structure and expression of a gene encoding a putative GTP-binding protein identified by provirus integration in a transgenic mouse strain[J]. Mol Cell Biol, 1991, 11(2):886-893. DOI:10. 1128/mcb. 11. 2. 886-893. 1991.
[3] Kenny PJ, Zhou H, Kim M, et al. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements[J]. Cell Rep, 2014, 9(5):1729-1741. DOI:10. 1016/j. celrep. 2014. 10. 054.
[4] Gregersen LH, Schueler M, Munschauer M, et al.MOV10 Is a 5'to 3'RNA helicase contributing to UPF1mRNA target degradation by translocation along 3'UTRs[J]. Mol Cell, 2014, 54(4):573-585. DOI:10. 1016/j. molcel. 2014. 03. 017.
[5] Koonin EV. A new group of putative RNA helicases[J]. Trends Biochem Sci, 1992, 17(12):495-497.DOI:10. 1016/0968-0004(92)90338-a.
[6] Meister G, Landthaler M, Peters L, et al.Identification of novel argonaute-associated proteins[J].Curr Biol, 2005, 15(23):2149-2155. DOI:10. 1016/j. cub. 2005. 10. 048.
[7] Skariah G, Seimetz J, Norsworthy M, et al. Mov10suppresses retroelements and regulates neuronal development and function in the developing brain[J].BMC Biol, 2017, 15(1):54. DOI:10. 1186/s12915-017-0387-1.
[8] Denli AM, Tops BBJ, Plasterk RHA, et al.Processing of primary microRNAs by the Microprocessor complex[J]. Nature, 2004, 432:231-235. DOI:10. 1038/nature03049.
[9] Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature,2003, 425:415-419. DOI:10. 1038/nature01957.
[10]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J]. RNA,2004, 10(2):185-191. DOI:10. 1261/rna. 5167604.
[11]Bartel DP. MicroRNAs:genomics, biogenesis,mechanism, and function[J]. Cell, 2004, 116(2):281-297. DOI:10. 1016/s0092-8674(04)00045-5.
[12]Riggs CL, Kedersha N, Ivanov P, et al. Mammalian stress granules and P bodies at a glance[J]. J Cell Sci,2020, 133(16):jcs242487. DOI:10. 1242/jcs. 242487.
[13]Hubstenberger A, Courel M, Bénard M, et al. P-body purification reveals the condensation of repressed mRNA regulons[J]. Mol Cell, 2017, 68(1):144-157. e5.DOI:10. 1016/j. molcel. 2017. 09. 003.
[14]Wang W, Snyder N, Worth AJ, et al. Regulation of lipid synthesis by the RNA helicase Mov10 controls Wnt5a production[J]. Oncogenesis, 2015, 4:e154.DOI:10. 1038/oncsis. 2015. 15.
[15]Skariah G, Perry KJ, Drnevich J, et al. RNA helicase Mov10 is essential for gastrulation and central nervous system development[J]. Dev Dyn, 2018, 247(4):660-671. DOI:10. 1002/dvdy. 24615.
[16]Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome[J].Nature, 2001, 409(6822):860-921. DOI:10. 1038/35057062.
[17]Feng Q, Moran JV, Kazazian HH, et al. Human L1retrotransposon encodes a conserved endonuclease required for retrotransposition[J]. Cell, 1996, 87(5):905-916. DOI:10. 1016/S0092-8674(00)81997-2.
[18]Cost GJ, Feng Q, Jacquier A, et al. Human L1element target-primed reverse transcription in vitro[J].EMBO J, 2002, 21(21):5899-5910. DOI:10. 1093/emboj/cdf592.
[19]Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L[J]. Nature, 2004, 431(7004):96-99. DOI:10. 1038/nature02886.
[20]Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting[J]. Nature, 2004, 429:900-903.DOI:10. 1038/nature02633.
[21]Matsui T, Leung D, Miyashita H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET[J]. Nature, 2010, 464:927-931. DOI:10. 1038/nature08858.
[22]Rowe HM, Jakobsson J, Mesnard D, et al. KAP1controls endogenous retroviruses in embryonic stem cells[J]. Nature, 2010, 463:237-240. DOI:10. 1038/nature08674.
[23]Girard A, Sachidanandam R, Hannon GJ, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins[J]. Nature, 2006, 442(7099):199-202.DOI:10. 1038/nature04917.
[24]Arora R, Bodak M, Penouty L, et al. Sequestration of LINE-1 in cytosolic aggregates by MOV10 restricts retrotransposition[J]. EMBO Rep, 2022, 23(9):e54458. DOI:10. 15252/embr. 202154458.
[25]Liu Q, Yi D, Ding J, et al. MOV10 recruits DCP2 to decap human LINE-1 RNA by forming large cytoplasmic granules with phase separation properties[J]. EMBO Rep, 2023, 24(9):e56512. DOI:10. 15252/embr. 202256512.
[26]Smith WB, Starck SR, Roberts RW, et al.Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons[J]. Neuron,2005, 45(5):765-779. DOI:10. 1016/j.neuron. 2005. 01. 015.
[27]Marin P, Nastiuk KL, Daniel N, et al. Glutamatedependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons[J]. J Neurosci, 1997, 17(10):3445-3454. DOI:10. 1523/jneurosci. 17-10-03445. 1997.
[28]Muddashetty RS, Keli?S, Gross C, et al.Dysregulated metabotropic glutamate receptordependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome[J]. J Neurosci, 2007, 27(20):5338-5348. DOI:10. 1523/jneurosci. 0937-07. 2007.
[29]Luchelli L, Thomas MG, Boccaccio GL. Synaptic control of mRNA translation by reversible assembly of XRN1 bodies[J]. J Cell Sci, 2015, 128(8):1542-1554. DOI:10. 1242/jcs. 163295.
[30]Weiler IJ, Greenough WT. Metabotropic glutamate receptors trigger postsynaptic protein synthesis[J]. Proc Natl Acad Sci U S A, 1993, 90(15):7168-7171.DOI:10. 1073/pnas. 90. 15. 7168.
[31]Scheetz AJ, Nairn AC, Constantine-Paton M. NMDA receptor-mediated control of protein synthesis at developing synapses[J]. Nat Neurosci, 2000, 3(3):211-216. DOI:10. 1038/72915.
[32]Kute PM, Ramakrishna S, Neelagandan N, et al.NMDAR mediated translation at the synapse is regulated by MOV10 and FMRP[J]. Mol Brain, 2019, 12(1):65. DOI:10. 1186/s13041-019-0473-0.
[33]Doers ME, Musser MT, Nichol R, et al. iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth[J]. Stem Cells Dev, 2014, 23(15):1777-1787. DOI:10. 1089/scd. 2014. 0030.
[34]Guo W, Polich ED, Su J, et al. Fragile X proteins FMRP and FXR2P control synaptic GluA1 expression and neuronal maturation via distinct mechanisms[J].Cell Rep, 2015, 11(10):1651-1666. DOI:10. 1016/j.celrep. 2015. 05. 013.
[35]Lannom MC, Nielsen J, Nawaz A, et al. FMRP and MOV10 regulate Dicer1 expression and dendrite development[J]. PLoS One, 2021, 16(11):e0260005. DOI:10. 1371/journal. pone. 0260005.
[36]Shen M, Wang F, Li M, et al. Reduced mitochondrial fusi on and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice[J]. Nat Neurosci, 2019, 22(3):386-400.DOI:10. 1038/s41593-019-0338-y.
[37]Blanco-Melo D, Venkatesh S, Bieniasz PD. Intrinsic cellular defenses against human immunodeficiency viruses[J]. Immunity, 2012, 37(3):399-411. DOI:10. 1016/j. immuni. 2012. 08. 013.
[38]Cano-Ortiz L, Luedde T, Münk C. HIV-1 restriction by SERINC5[J]. Med Microbiol Immunol, 2023, 212(2):133-140. DOI:10. 1007/s00430-022-00732-x.
[39]Antonucci JM, St Gelais C, Wu L. The dynamic interplay between HIV-1, SAMHD1, and the innate antiviral response[J]. Front Immunol, 2017, 8:1541.DOI:10. 3389/fimmu. 2017. 01541.
[40]Ikeda T, Yue Y, Shimizu R, et al. Potential utilization of APOBEC3-mediated mutagenesis for an HIV-1functional cure[J]. Front Microbiol, 2021, 12:686357. DOI:10. 3389/fmicb. 2021. 686357.
[41]Ganser-Pornillos BK, Pornillos O. Restriction of HIV-1and other retroviruses by TRIM5[J]. Nat Rev Microbiol, 2019, 17:546-556. DOI:10. 1038/s41579-019-0225-2.
[42]Staeheli P, Haller O. Human MX2/MxB:a potent interferon-induced postentry inhibitor of herpesviruses and HIV-1[J]. J Virol, 2018, 92(24):e00709-18.DOI:10. 1128/jvi. 00709-18.
[43]Rivera-Serrano EE, Gizzi AS, Arnold JJ, et al. Viperin reveals its true function[J]. Annu Rev Virol, 2020, 7(1):421-446. DOI:10. 1146/annurev-virology-011720-095930.
[44]Abdel-Mohsen M, Wang C, Strain MC, et al. Select host restriction factors are associated with HIV persistence during antiretroviral therapy[J]. AIDS,2015, 29(4):411-420. DOI:10. 1097/qad. 0000000000000572.
[45]Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu[J].Nature, 2008, 451(7177):425-430. DOI:10. 1038/nature06553.
[46]Furtak V, Mulky A, Rawlings SA, et al. Perturbation of the P-body component Mov10 inhibits HIV-1infectivity[J]. PLoS One, 2010, 5(2):e9081. DOI:10. 1371/journal. pone. 0009081.
[47]Liu Y, Wang H, Zhang J, et al. SERINC5 inhibits the secretion of complete and genome-free hepatitis B virions through interfering with the glycosylation of the HBV envelope[J]. Front Microbiol, 2020, 11:697. DOI:10. 3389/fmicb. 2020. 00697.
[48]Jeong GU, Park IH, Ahn K, et al. Inhibition of hepatitis B virus replication by a dNTPase-dependent function of the host restriction factor SAMHD1[J].Virology, 2016, 495:71-78. DOI:10. 1016/j.virol. 2016. 05. 001.
[49]Bouzidi MS, Caval V, Suspène R, et al. APOBEC3DE antagonizes hepatitis B virus restriction factors APOBEC3F and APOBEC3G[J]. J Mol Biol, 2016,428(17):3514-3528. DOI:10. 1016/j.jmb. 2016. 05. 022.
[50]Zhao F, Xu F, Liu X, et al. SERINC5 restricts influenza virus infectivity[J]. PLoS Pathog, 2022, 18(10):e1010907. DOI:10. 1371/journal.ppat. 1010907.
[51]Silva T, Temerozo JR, do Vale G, et al. The chemokine CCL5 inhibits the replication of influenza A virus through SAMHD1 modulation[J]. Front Cell Infect Microbiol, 2021, 11:549020. DOI:10. 3389/fcimb. 2021. 549020.
[52]Jitobaom K, Sirihongthong T, Boonarkart C, et al.Human Schlafen 11 inhibits influenza A virus production[J]. Virus Res, 2023, 334:199162. DOI:10. 1016/j.virusres. 2023. 199162.
[53]Zhang J, Huang F, Tan L, et al. Host protein moloney leukemia virus 10(MOV10)acts as a restriction factor of influenza A virus by inhibiting the nuclear import of the viral nucleoprotein[J]. J Virol, 2016, 90(8):3966-3980. DOI:10. 1128/jvi. 03137-15.
[54]Li J, Hu S, Xu F, et al. MOV10 sequesters the RNP of influenza A virus in the cytoplasm and is antagonized by viral NS1 protein[J]. Biochem J, 2019, 476(3):467-481. DOI:10. 1042/bcj20180754.
[55]Villalón-Letelier F, Reading PC. Unraveling the role of the MOV10 RNA helicase during influenza A virus infection[J]. Biochem J, 2019, 476(6):1005-1008.DOI:10. 1042/bcj20190018.
[56]Izumi T, Burdick R, Shigemi M, et al. Mov10 and APOBEC3G localization to processing bodies is not required for virion incorporation and antiviral activity[J]. J Virol, 2013, 87(20):11047-11062. DOI:10. 1128/jvi. 02070-13.
[57]Wang X, Han Y, Dang Y, et al. Moloney leukemia virus 10(MOV10)protein inhibits retrovirus replication[J]. J Biol Chem, 2010, 285(19):14346-14355.DOI:10. 1074/jbc. m110. 109314.
[58]Zhou P, Bogacki R, McReynolds L, et al. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins[J]. Mol Cell, 2000, 6(3):751-756. DOI:10. 1016/s1097-2765(00)00074-5.
[59]Wang L, Sola I, Enjuanes L, et al. MOV10 helicase interacts with coronavirus nucleocapsid protein and has antiviral activity[J]. mBio, 2021, 12(5):e0131621.DOI:10. 1128/mbio. 01316-21.
[60]Mo Q, Xu Z, Deng F, et al. Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly[J]. PLoS Pathog, 2020, 16(12):e1009129. DOI:10. 1371/journal.ppat. 1009129.
[61]Liu T, Sun Q, Liu Y, et al. The MOV10 helicase restricts hepatitis B virus replication by inhibiting viral reverse transcription[J]. J Biol Chem, 2019, 294(51):19804-19813. DOI:10. 1074/jbc. ra119. 009435.
[62]Yang X, Xiang Z, Sun Z, et al. Host MOV10 is induced to restrict herpes simplex virus 1 lytic infection by promoting type I interferon response[J]. PLoS Pathog, 2022, 18(2):e1010301. DOI:10. 1371/journal. ppat. 1010301.
[63]Zhao K, Li LW, Zhang YJ, et al. MOV10 inhibits replication of porcine reproductive and respiratory syndrome virus by retaining viral nucleocapsid protein in the cytoplasm of Marc-145 cells[J]. Biochem Biophys Res Commun, 2018, 504(1):157-163. DOI:10. 1016/j. bbrc. 2018. 08. 148.
[64]Balinsky CA, Schmeisser H, Wells AI, et al. IRAV(FLJ11286), an interferon-stimulated gene with antiviral activity against dengue virus, interacts with MOV10[J]. J Virol, 2017, 91(5):e01606-16. DOI:10. 1128/jvi. 01606-16.
[65]Wang H, Chang L, Wang X, et al. MOV10 interacts with Enterovirus 71 genomic 5'UTR and modulates viral replication[J]. Biochem Biophys Res Commun, 2016,479(3):571-577. DOI:10. 1016/j. bbrc. 2016. 09. 112.
[66]Liu D, Ndongwe TP, Puray-Chavez M, et al. Effect of P-body component Mov10 on HCV virus production and infectivity[J]. FASEB J, 2020, 34(7):9433-9449.DOI:10. 1096/fj. 201800641r.
[67]Haussecker D, Cao D, Huang Y, et al. Capped small RNAs and MOV10 in human hepatitis delta virus replication[J]. Nat Struct Mol Biol, 2008, 15(7):714-721. DOI:10. 1038/nsmb. 1440.

基本信息:

DOI:10.13242/j.cnki.bingduxuebao.004598

中图分类号:R373

引用信息:

[1]柳永赛,宋雨濛,王化磊等.MOV10在细胞生物学与抗病毒功能中的研究进展[J].病毒学报,2024,40(06):1453-1461.DOI:10.13242/j.cnki.bingduxuebao.004598.

基金信息:

吉林省自然科学基金(项目号:20230101172JC),题目:天然免疫限制因子MOV10限制狂犬病病毒复制的分子机制研究~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文