中国疾病预防控制中心病毒病预防控制所传染病溯源预警与智能决策全国重点实验室;宁夏回族自治区疾病预防控制中心宁夏回族自治区预防医学科学院;
为了调查宁夏地区蚊虫携带主要蚊媒病毒的种类及其流行情况,本研究于2023年在宁夏采集蚊虫样本,采用实时荧光定量逆转录PCR(Reverse transcription-quantitative real-time PCR, RT-qPCR)筛查6种蚊媒病毒核酸,包括塔希纳病毒(Tahyna virus, TAHV)、乙脑病毒(Japanese encephalitis virus, JEV)、辛德毕斯病毒(Sindbis virus,SINV)、西尼罗病毒(West Nile virus, WNV)、库蚊黄病毒(Culex flavivirus, CxFV)和盖塔病毒(Getah virus,GETV)。对阳性样本进行病毒基因扩增、序列测定及系统进化分析。结果共采集5540只蚊虫标本,包含伊蚊、按蚊和库蚊,其中伊蚊数量最多为3350只(60.47%)。按采集时间、地点和蚊种共分装为185批标本。RT-qPCR检测结果显示,1批蚊虫JEV阳性,1批蚊虫TAHV阳性,55批蚊虫CxFv阳性。经Sanger测序获得1株TAHV的S、M和L段基因序列,长度分别为767 nt、3836 nt、6814 nt。1株JEV全基因组序列,长度为10967 nt。36株CxFv E基因序列,长度约为1450 nt。同源性及系统发育分析结果显示,新测序的TAHV S、M、L段基因序列分别与内蒙古分离株HQ541823.1、盘锦分离株OP727995.1和捷克斯洛伐克分离株KF361881.1亲缘关系最近,核苷酸(氨基酸)相似性分别为99.29%(100%)、94.76%(98.47%)、95.22%(99.25%);新测序的JEV全基因组序列与2020年四川毒株JEV-SC-2020-1亲缘关系较近,核苷酸(氨基酸)相似性为99.83%(99.97%),同属于GIb型;2批CxFv(NX23176、NX23182)属于GIB型,34批CxFv属于GIA型。本研究于2023年在宁夏采集的蚊虫中检测到3种蚊媒病毒,并首次在宁夏获得1株TAHV S、M、L段完整编码区基因组序列,为当地蚊媒病毒监测和防控提供了重要的基础数据。
57 | 0 | 38 |
下载次数 | 被引频次 | 阅读次数 |
[1] Weaver SC, Reisen WK. Present and future arboviral threats[J]. Antiviral Res, 2010, 85(2):328-345.DOI:10. 1016/j. antiviral. 2009. 10. 008.
[2]夏菡,袁志明.美国CDC《微生物和生物医学实验室生物安全》(第6版)中虫媒病毒生物安全名录简介[J].中国热带医学,2022, 22(2):97-100. DOI:10. 13604/j.cnki. 46-1064/r. 2022. 02. 01.
[3] Huang Y, Wang S, Liu H, et al. A global dataset of sequence, diversity and biosafety recommendation of arbovirus and arthropod-specific virus[J]. Sci Data,2023, 10(1):305. DOI:10. 1038/s41597-023-02226-8.
[4]殷启凯,付士红,王环宇,等.我国蚊传虫媒病毒及蚊传虫媒病毒病现状及展望[J].中国热带医学,2024,24(4):478-485. DOI:10. 13604/j. cnki. 46-1064/r. 2024. 04. 21.
[5]李雨晗,张櫶文,程功.虫媒病毒与生物安全[J].生物学杂志,2023, 40(6):1-6. DOI:10. 3969/j.issn. 2095-1736. 2023. 06. 001.
[6] Liu W, Fu S, Ma X, et al. An outbreak of Japanese encephalitis caused by genotype Ib Japanese encephalitis virus in China, 2018:a laboratory and field investigation[J]. PLoS Negl Trop Dis, 2020, 14(5):e0008312.DOI:10. 1371/journal. pntd. 0008312.
[7]应思超,付士红,徐学平,等.宁夏首次分离到库蚊黄病毒及其分子遗传进化[J].病毒学报,2022, 38(6):1330-1338. DOI:10. 13242/j.cnki.bingduxuebao. 004233.
[8] He X, Yin Q, Zhou L, et al. Metagenomic sequencing reveals viral abundance and diversity in mosquitoes from the Shaanxi-Gansu-Ningxia region, China[J]. PLoS Negl Trop Dis, 2021, 15(4):e0009381. DOI:10. 1371/journal. pntd. 0009381.
[9]李樊,殷启凯,胡伟军,等.我国西北地区蚊虫标本中广平病毒的检测[J].疾病监测,2022, 37(3):373-376. DOI:10. 3784/jbjc. 202106230360.
[10]殷启凯.中国西北地区蚊传虫媒病毒分布研究[D].北京:中国疾病预防控制中心,2020. DOI:10. 27511/d.cnki. gzyyy. 2020. 000076.
[11]Liang GD, Li L, Zhou GL, et al. Isolation and complete nucleotide sequence of a Chinese sindbis-like virus[J]. J Gen Virol, 2000, 81(Pt 5):1347-1351.DOI:10. 1099/0022-1317-81-5-1347.
[12]Fu S, Song S, Liu H, et al. ZIKA virus isolated from mosquitoes:a field and laboratory investigation in China, 2016[J]. Sci China Life Sci, 2017, 60(12):1364-1371. DOI:10. 1007/s11427-017-9196-8.
[13]Calzolari M, Bonilauri P, Grisendi A, et al. Arbovirus screening in mosquitoes in Emilia-Romagna(Italy,2021)and isolation of tahyna virus[J]. Microbiol Spectr, 2022, 10(5):e0158722. DOI:10. 1128/spectrum. 01587-22.
[14]Tingstr?m O, Wesula Lwande O, N?slund J, et al.Detection of sindbis and inkoo virus RNA in genetically typed mosquito larvae sampled in northern Sweden[J].Vector Borne Zoonotic Dis, 2016, 16(7):461-467.DOI:10. 1089/vbz. 2016. 1940.
[15]付士红.虫媒病毒的分离与鉴定[J].中国媒介生物学及控制杂志,2012, 23(5):432-435.
[16]Li H, Cao YX, He XX, et al. Real-time RT-PCR assay for the detection of tahyna virus[J]. Biomed Environ Sci, 2015, 28(5):374-377. DOI:10. 3967/bes2015. 052.
[17]Sane J, Kurkela S, Levanov L, et al. Development and evaluation of a real-time RT-PCR assay for Sindbis virus detection[J]. J Virol Methods, 2012, 179(1):185-188. DOI:10. 1016/j. jviromet. 2011. 10. 021.
[18]Shao N, Li F, Nie K, et al. TaqMan real-time RTPCR assay for detecting and differentiating Japanese encephalitis virus[J]. Biomed Environ Sci, 2018, 31(3):208-214. DOI:10. 3967/bes2018. 026.
[19]Linke S, Ellerbrok H, Niedrig M, et al. Detection of West Nile virus lineages 1 and 2 by real-time PCR[J]. J Virol Methods, 2007, 146(1-2):355-358. DOI:10. 1016/j. jviromet. 2007. 05. 021.
[20]Cao YX, He XX, Fu SH, et al. Real-time RT-PCR assay for the detection of Culex flavivirus[J]. Biomed Environ Sci, 2015, 28(12):917-919. DOI:10. 3967/bes2015. 126.
[21]Shi N, Liu H, Li LX, et al. Development of a TaqMan probe-based quantitative reverse transcription PCR assay for detection of Getah virus RNA[J]. Arch Virol,2018, 163(10):2877-2881. DOI:10. 1007/s00705-018-3927-2.
[22]Cai T, Liu R, Jiang Y, et al. Vector competence evaluation of mosquitoes for Tahyna virus PJ01 strain, a new Orthobunyavirus in China[J]. Front Microbiol,2023, 14:1159835.DOI:10. 3389/fmicb. 2023. 1159835.
[23]潘晓玲,梁国栋.乙脑病毒基因Ⅰ、Ⅲ型特异性全基因组引物[J].中华实验和临床病毒学杂志,2009, 23(4):254-256. DOI:10. 3760/cma. j. issn. 1003-9279. 2009. 04. 006.
[24]Saiyasombat R, Dorman KS, Garcia-Rejon JE, et al.Isolation and sequence analysis of Culex flavivirus from Culex interrogator and Culex quinquefasciatus in the Yucatan Peninsula of Mexico[J]. Arch Virol, 2010,155(6):983-986. DOI:10. 1007/s00705-010-0665-5.
[25]Wang J, Xu H, Song S, et al. Emergence of zika virus in Culex tritaeniorhynchus and Anopheles sinensis mosquitoes in China[J]. Virol Sin, 2021, 36(1):33-42. DOI:10. 1007/s12250-020-00239-w.
[26]Nakamura T, Yamada KD, Tomii K, et al.Parallelization of MAFFT for large-scale multiple sequence alignments[J]. Bioinformatics, 2018, 34(14):2490-2492. DOI:10. 1093/bioinformatics/bty121.
[27]Kumar S, Stecher G, Li M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549. DOI:10. 1093/molbev/msy096.
[28]李荣彪,李锦清,何亿雄.白纹伊蚊昼夜吸血活动的观察[J].医学动物防制,2004, 20(1):27. DOI:10. 3969/j. issn. 1003-6245. 2004. 01. 014.
[29]Fang Y, Zhang Y, Zhou ZB, et al. New strains of Japanese encephalitis virus circulating in Shanghai,China after a ten-year hiatus in local mosquito surveillance[J]. Parasit Vectors, 2019, 12(1):22.DOI:10. 1186/s13071-018-3267-9.
[30]Zhang W, Yin Q, Wang H, et al. The reemerging and outbreak of genotypes 4 and 5 of Japanese encephalitis virus[J]. Front Cell Infect Microbiol, 2023, 13:1292693. DOI:10. 3389/fcimb. 2023. 1292693.
[31]Chen XJ, Wang HY, Li XL, et al. Japanese encephalitis in China in the period of 1950-2018:from discovery to control[J]. Biomed Environ Sci, 2021, 34(3):175-183. DOI:10. 3967/bes2021. 024.
[32]梁国栋.中国大陆乙脑病原学研究的历史与现状[J].病毒学报,2024, 40(4):671-678. DOI:10. 13242/j.cnki. bingduxuebao. 004530.
[33]de Wispelaere M, Desprès P, Choumet V. European Aedes albopictus and Culex pipiens are competent vectors for Japanese encephalitis virus[J]. PLoS Negl Trop Dis, 2017, 11(1):e0005294. DOI:10. 1371/journal. pntd. 0005294.
[34]Nicholson J, Ritchie SA, van den Hurk AF. Aedes albopictus(Diptera:Culicidae)as a potential vector of endemic and exotic arboviruses in Australia[J]. J Med Entomol, 2014, 51(3):661-669. DOI:10. 1603/me13204.
[35]吕志,付士红,吕新军,等.中国首次分离的Tahyna病毒毒株的生物学特性及分子进化特征分析[J].病毒学报,2011, 27(2):97-102. DOI:10. 13242/j. cnki.bingduxuebao. 002149.
[36]Li WJ, Wang JL, Li MH, et al. Mosquitoes and mosquito-borne arboviruses in the Qinghai-Tibet Plateau—focused on the Qinghai area, China[J]. Am J Trop Med Hyg, 2010, 82(4):705-711. DOI:10. 4269/ajtmh. 2010. 09-0649.
[37]Cao Y, Fu S, Tian Z, et al. Distribution of mosquitoes and mosquito-borne arboviruses in Inner Mongolia,China[J]. Vector Borne Zoonotic Dis, 2011, 11(12):1577-1581. DOI:10. 1089/vbz. 2010. 0262.
基本信息:
DOI:10.13242/j.cnki.bingduxuebao.240323
中图分类号:R373.3
引用信息:
[1]郁丽琴,韩坤,陈汉等.2023年宁夏回族自治区6种蚊媒病毒调查[J].病毒学报,2025,41(02):507-514.DOI:10.13242/j.cnki.bingduxuebao.240323.
基金信息:
国家重点研发计划资助(项目号:2022YFC2302700),题目:跨境虫媒传染病防控病原监控体系研究与口岸应用~~