| 67 | 0 | 102 |
| 下载次数 | 被引频次 | 阅读次数 |
荆门蜱虫病毒(Jingmen tick virus, JMTV)作为一种新发现的分节段正链RNA病毒,其非编码区(Untranslated regions, UTR)在病毒复制周期中可能发挥关键调控作用。为阐明JMTV S3片段5'UTR和3'UTR的分子调控机制,本研究以JMTV-ZYJ4毒株为研究对象,通过构建含有S3片段5'UTR或3'UTR的绿色荧光蛋白(EGFP)及荧光素酶(Luc)报告基因重组表达质粒,系统分析了UTR元件对病毒基因转录和翻译的调控特性。结果表明,在转录调控方面:JMTV S3片段的3'UTR显著增强报告基因mRNA的转录水平(较对照组提高1.6倍),而5'UTR则表现出轻微抑制作用(降至对照的0.74倍);在翻译调控方面:5'UTR显著促进蛋白翻译效率(荧光素酶活性提升至对照的2.3倍,EGFP表达增强),而3'UTR则呈现轻微抑制作用(荧光素酶活性降至0.54倍,EGFP表达减弱)。双荧光素酶报告系统定量分析结果表明,上述转录和翻译调控结果均具有统计学显著性差异(P<0.05)。本研究首次揭示JMTV S3片段UTR存在双向调控功能:3'UTR通过促进转录,可能影响病毒mRNA的时序性表达,进而参与潜伏感染建立或免疫逃逸等生物学过程;5'UTR通过高效招募翻译起始复合体,为病毒早期感染提供蛋白合成支持。这些发现不仅为解析JMTV的致病机制提供了新视角,也为开发靶向UTR的抗病毒干预策略奠定了理论基础。
Abstract:Jingmen tick virus(JMTV) is a recently identified segmented positive-sense single-stranded RNA virus, in which the untranslated regions(UTRs) are presumed to play critical regulatory roles during the viral replication cycle. To elucidate the molecular regulatory functions of the 5′ and 3′ UTRs of the JMTV S3 segment, this study employed the JMTV-ZYJ4 strain to construct recombinant expression plasmids encoding enhanced green fluorescent protein(EGFP) or luciferase(Luc) reporter genes under the control of either the 5′UTR or 3′UTR. These constructs were transfected into HEK293T cells to assess the impact of each UTR on viral gene transcription and protein translation. The results showed that the 3′UTR significantly enhanced reporter gene mRNA levels, increasing transcription by 1.6-fold relative to the control, while exerting a mild inhibitory effect on translation(luciferase activity reduced to 0.54-fold and EGFP expression weakened). Conversely, the 5'UTR slightly suppressed transcription(0.74-fold of control) but markedly promoted translation(luciferase activity elevated to 2.3-fold, with enhanced EGFP expression). These regulatory effects were quantitatively validated using a dual-luciferase reporter assay, revealing statistically significant differences(P < 0.05). This study is the first to demonstrate the bidirectional regulatory functions of the JMTV S3 UTRs: the 3′UTR enhances transcription, potentially modulating the temporal expression of viral mRNAs and contributing to biological processes such as latent infection or immune evasion; the 5′UTR facilitates efficient recruitment of the translation initiation complex, thereby supporting viral protein synthesis during early infection. These findings offer new insights into the pathogenic mechanisms of JMTV and provide a theoretical basis for the development of antiviral strategies targeting UTR-mediated regulatory pathways.
[1]Qin XC, Shi M, Tian JH, et al. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors[J]. Proc Natl Acad Sci USA, 2014, 111(18):6744-6749. DOI:10. 1073/pnas. 1324194111.
[2]Pascoal JO, Siqueira SM, Maia RDC, et al. Detection and molecular characterization of Mogiana tick virus(MGTV)in Rhipicephalus microplus collected from cattle in a savannah area, Uberlandia, Brazil[J]. Ticks Tick Borne Dis, 2019, 10(1):162-165. DOI:10. 1016/j. ttbdis. 2018. 10. 002.
[3]Webster CL, Waldron FM, Robertson S, et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster[J]. PLoS Biol, 2015, 13(7):e1002210. DOI:10. 1371/journal.pbio. 1002210.
[4]Shi M, Lin XD, Vasilakis N, et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses[J]. J Virol, 2015, 90(2):659-669. DOI:10. 1128/JVI. 02036-15.
[5]Ladner JT, Wiley MR, Beitzel B, et al. A multicomponent animal virus isolated from mosquitoes[J]. Cell Host Microbe, 2016, 20(3):357-367. DOI:10. 1016/j. chom. 2016. 07. 011.
[6]Wang ZD, Wang B, Wei F, et al. A new segmented virus associated with human febrile illness in China[J].N Engl J Med, 2019, 380(22):2116-2125. DOI:10. 1056/NEJMoa1805068.
[7]Kuivanen S, Levanov L, Kareinen L, et al. Detection of novel tick-borne pathogen, Alongshan virus, in Ixodes ricinus ticks, south-eastern Finland, 2019[J].Euro Surveill, 2019, 24(27):1900394. DOI:10. 2807/1560-7917. ES. 2019. 24. 27. 1900394.
[8]Kholodilov IS, Litov AG, Klimentov AS, et al.Isolation and characterisation of alongshan virus in Russia[J]. Viruses, 2020, 12(4):362. DOI:10. 3390/v12040362.
[9]Pang Z, Jin Y, Pan M, et al. Geographical distribution and phylogenetic analysis of Jingmen tick virus in China[J]. iScience, 2022, 25(9):105007. DOI:10. 1016/j.isci. 2022. 105007.
[10]Zhang X, Wang N, Wang Z, et al. The discovery of segmented flaviviruses:implications for viral emergence[J]. Curr Opin Virol, 2020, 40:11-18. DOI:10. 1016/j. coviro. 2020. 02. 001.
[11]Emmerich P, Jakupi X, von Possel R, et al. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo[J]. Infect Genet Evol, 2018, 65:6-11. DOI:10. 1016/j. meegid. 2018. 07. 010.
[12]Jia N, Liu HB, Ni XB, et al. Emergence of human infection with Jingmen tick virus in China:a retrospective study[J]. EBioMedicine, 2019, 43:317-324. DOI:10. 1016/j. ebiom. 2019. 04. 004.
[13]杨玉姣,熊柯尧,陶家成,等.黄病毒基因组非编码区的结构与功能研究进展[J].病毒学报,2021, 37(02):435-444. DOI:10. 13242/j. cnki.bingduxuebao. 003900.
[14]Friebe P, Harris E. Interplay of RNA elements in the dengue virus 5'and 3'ends required for viral RNA replication[J]. J Virol, 2010, 84(12):6103-6118.DOI:10. 1128/JVI. 02042-09.
[15]Friebe P, Shi PY, Harris E. The 5'and 3'downstream AUG region elements are required for mosquito-borne flavivirus RNA replication[J]. J Virol, 2011, 85(4):1900-1905. DOI:10. 1128/JVI. 02037-10.
[16]Mazeaud C, Freppel W, Chatel-Chaix L. The multiples fates of the flavivirus RNA genome during pathogenesis[J]. Front Genet, 2018, 9:595. DOI:10. 3389/fgene. 2018. 00595.
[17]Liu H, Zhang J, Niu Y, et al. The 5'and 3'untranslated regions of the Japanese encephalitis virus(JEV):molecular genetics and higher order structures[J]. Front Microbiol, 2021, 12:730045. DOI:10. 3389/fmicb. 2021. 730045.
[18]Litov AG, Okhezin EV, Kholodilov IS, et al.Conserved sequences in the 5'and 3'untranslated regions of jingmenvirus group representatives[J]. Viruses,2023, 15(4):971. DOI:10. 3390/v15040971.
[19]王莹莹,马跃宇,费东亮,等.中蜂囊状幼虫病毒非编码区对蛋白翻译的影响[J].病毒学报,2022, 38(06):1429-1437. DOI:10. 13242/j. cnki.bingduxuebao. 004213.
[20]李池慧,陶然,李华美,等. KSR2基因3’UTR双荧光素酶报告基因载体构建及其与hcmv-miR-UL70-3p和hcmv-miR-US4-3p靶向关系验证[J].病毒学报,2021, 37(6):1410-1419. DOI:10. 13242/j. cnki.bingduxuebao. 004060.
[21]Song Y, Mugavero J, Stauft CB, et al. Dengue and zika virus 5'untranslated regions harbor internal ribosomal entry site functions[J]. mBio, 2019, 10(2):e00459-19. DOI:10. 1128/mBio. 00459-19.
[22]Pallarés HM, Costa Navarro GS, Villordo SM, et al.Zika virus subgenomic flavivirus RNA generation requires cooperativity between duplicated RNA structures that are essential for productive infection in human cells[J]. J Virol, 2020, 94(18):e00343-20.DOI:10. 1128/JVI. 00343-20.
基本信息:
DOI:10.13242/j.cnki.bingduxuebao.250204
中图分类号:R373.3
引用信息:
[1]冯秀伟,冯硕,郭亚青,等.荆门蜱虫病毒S3片段非编码区对转录调控和蛋白翻译的影响[J].病毒学报,2025,41(05):1415-1424.DOI:10.13242/j.cnki.bingduxuebao.250204.
基金信息: