nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 05, v.40 961-969
新冠病毒非选择性突变增加相关的非结构蛋白突变探究
基金项目(Foundation):
邮箱(Email): guif_hu@sina.com;yingzi224926@smu.edu.cn;
DOI: 10.13242/j.cnki.bingduxuebao.004577
摘要:

严重急性呼吸综合征冠状病毒2型(新冠病毒,Severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)基因组不断发生变异,新冠病毒非结构蛋白可影响新冠病毒基因组复制和组装。研究发现,通常认为比较保守的非结构蛋白也存在不同程度的变异。本研究旨在找出可能与新冠病毒非选择性突变增加相关的热点非结构蛋白基因突变。从全球共享流感数据倡议组织(Global Initiative of Sharing All Influenza Data, GISAID)数据库下载新冠病毒序列,将得到的序列与参考序列进行比对得到各序列突变情况。采用逻辑回归检验方法筛选出与病毒非选择性突变增加相关的非结构蛋白,分析这些非结构蛋白中突变频率前五位的核苷酸突变与病毒非选择性突变的关系,找出与非选择性突变频率增加有关的热点核苷酸突变。本研究共纳入236 235条序列进行分析,各序列突变数量平均值为39.11。选取选择压力较小的M蛋白和E蛋白(Membrane protein or envelope protein, MoE)的突变总和代表病毒非选择性突变。调整发病时间、地理位置及变异株等因素后,多因素逻辑回归显示,NSP1中T670G、T445C、C745T,NSP3中C3037T、C7124T、C6402T,NSP4中C8986T、G9053T、C9891T,NSP6中T11418C、C11514T,NSP7中C11956T、C12008T,NSP12中C14408T,NSP13中C16466T、A17615G,NSP14中C19220T、A18163G、C18744T、C18877T、C19524T与MoE突变呈正相关(P<0.05),与病毒非选择性突变增加有关。新冠病毒非结构蛋白NSP1、NSP3、NSP4、NSP6、NSP7、NSP8、NSP12、NSP13、NSP14的某些热点核苷酸突变可能与基因组非选择突变增加有关。

Abstract:

Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) genomes are constantly mutating,and SARS-CoV-2 non-structural proteins (NSPs) can affect SARS-CoV-2 genome replication and assembly.It has been found that NSPs,which are usually considered to be relatively conserved,also showed different degree of variations.The aim of this study was to identify hotspot NSPs gene mutations that may be associated with increased non-selective mutations in SARS-CoV-2.Sequences of SARS-CoV-2 were downloaded from the Global Initiative on Sharing All Influenza Data (GISAID) database,and the downloaded sequences were compared with the reference sequences to obtain the mutation status of each sequence.The logistic regression test was used to screen the NSPs associated with increased viral non-selective mutations.The relationship between the top five nucleotide mutations of these NSPs and viral non-selective mutations was analyzed,to find out the hotspot nucleotide mutations that were associated with increased frequency of non-selective mutations.A total of 236,235 sequences were included in this study,and the mean value of the number of mutations in each sequence was 39.11.The sum of the mutations in the M and E proteins (MoE),which suffered less selection pressure,was selected to represent the viral non-selective mutations.After adjusting for time of onset,geographic location and variant strain,multifactorial logistic regression showed that NSP1_T670G,NSP1_T445C,NSP1_C745T,NSP3_C3037T,NSP3_C7124T,NSP3_C6402T,NSP4_C8986T,NSP4_G9053T,NSP4_C9891T,NSP6_T11418C,NSP6_C11514T,NSP7_C11956T,NSP7_C12008T,NSP12_C14408T,NSP13_C16466T,NSP13_A17615G,NSP14_C19220T,NSP14_A18163G,NSP14_C18744T,NSP14_C18877T and NSP14_C19524T were positively correlated with MoE mutations (P<0.05),and associated with increased non-selective mutations in the virus.Certain hotspot nucleotide mutations in NSP1,NSP3,NSP4,NSP6,NSP7,NSP8,NSP12,NSP13,and NSP14 of the SARS-CoV-2may be associated with increased non-selective mutations in the genome.

参考文献

[1] Stobart CC, Sexton NR, Munjal H, et al. Chimeric exchange of coronavirus nsp5 proteases(3CLpro)identifies common and divergent regulatory determinants of protease activity[J]. J Virol, 2013, 87(23):12611-12618. DOI:10. 1128/jvi. 02050-13.

[2] te Velthuis AJ, van den Worm SH, Snijder EJ. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension[J]. Nucleic Acids Res,2012, 40(4):1737-1747. DOI:10. 1093/nar/gkr893.

[3] Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing[J]. Adv Virus Res, 2016, 96:59-126.DOI:10. 1016/bs. aivir. 2016. 08. 008.

[4] Ellis P, Somogyvári F, Virok DP, et al. Decoding covid-19 with the SARS-CoV-2 genome[J]. Curr Genet Med Rep, 2021, 9(1):1-12. DOI:10. 1007/s40142-020-00197-5.

[5] Chen Y, Liu Q, Guo D. Emerging coronaviruses:Genome structure, replication, and pathogenesis[J]. J Med Virol, 2020, 92(4):418-423. DOI:10. 1002/jmv. 25681.

[6] Haque SM, Ashwaq O, Sarief A, et al. A comprehensive review about SARS-CoV-2[J]. Future Virol, 2020, 15(9):625-648. DOI:10. 2217/fvl-2020-0124.

[7] Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367(6485):1444-1448. DOI:10. 1126/science. abb2762.

[8] Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2[J]. Nature,2020, 581:221-224. DOI:10. 1038/s41586-020-2179-y.

[9] Banerjee S, Seal S, Dey R, et al. Mutational spectra of SARS-CoV-2 orf1ab polyprotein and signature mutations in the United States of America[J]. J Med Virol, 2021, 93(3):1428-1435. DOI:10. 1002/jmv. 26417.

[10]Laha S, Chakraborty J, Das S, et al. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission[J]. Infect Genet Evol,2020, 85:104445.DOI:10. 1016/j.meegid. 2020. 104445.

[11]Choi B, Choudhary MC, Regan J, et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host[J]. N Engl J Med, 2020,383(23):2291-2293. DOI:10. 1056/nejmc2031364.

[12]Tarhini H, Recoing A, Bridier-nahmias A, et al. Longterm severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infectiousness among three immunocompromised patients:from prolonged viral shedding to SARS-CoV-2 superinfection[J]. J Infect Dis, 2021, 223(9):1522-1527. DOI:10. 1093/infdis/jiab075.

[13]Yin X, Popa H, Stapon A, et al. Fidelity of ribonucleotide incorporation by the SARS-CoV-2replication complex[J]. J Mol Biol, 2023, 435(5):167973. DOI:10. 1016/j. jmb. 2023. 167973.

[14]Eskier D, Karakülah G, Suner A, et al. RdRp mutations are associated with SARS-CoV-2 genome evolution[J]. PeerJ, 2020, 8:e9587. DOI:10. 7717/peerj. 9587.

[15]Dilucca M, Forcelloni S, Georgakilas AG, et al.Codon usage and phenotypic divergences of SARS-CoV-2 genes[J]. Viruses, 2020, 12(5):E498. DOI:10. 3390/v12050498.

[16]Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNAdependent-RNA polymerase variant[J]. J Transl Med,2020, 18(1):179. DOI:10. 1186/s12967-020-02344-6.

[17]Malone B, Urakova N, Snijder EJ, et al. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design[J]. Nat Rev Mol Cell Biol, 2022, 23:21-39.DOI:10. 1038/s41580-021-00432-z.

[18]Eskier D, Suner A, Oktay Y, et al. Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load[J]. PeerJ, 2020, 8:e10181. DOI:10. 7717/peerj. 10181.

[19]Frolov I, Agback T, Palchevska O, et al. All domains of SARS-CoV-2 nsp1 determine translational shutoff and cytotoxicity of the protein[J]. J Virol, 2023, 97(3):e0186522. DOI:10. 1128/jvi. 01865-22.

[20]Mou K, Mukhtar F, Khan MT, et al. Emerging mutations in Nsp1 of SARS-CoV-2 and their effect on the structural stability[J]. Pathogens, 2021, 10(10):1285. DOI:10. 3390/pathogens10101285.

[21]Gori Savellini G, Anichini G, Cusi MG. SARS-CoV-2omicron sub-lineages differentially modulate interferon response in human lung epithelial cells[J]. Virus Res,2023, 332:199134.DOI:10. 1016/j.virusres. 2023. 199134.

[22]Ricciardi S, Guarino AM, Giaquinto L, et al. The role of NSP6 in the biogenesis of the SARS-CoV-2replication organelle[J]. Nature, 2022, 606:761-768.DOI:10. 1038/s41586-022-04835-6.

[23]Ahmadi AS, Zadheidar S, Sadeghi K, et al. SARSCoV-2 intrahost evolution in immunocompromised patients in comparison with immunocompetent populations after treatment[J]. J Med Virol, 2023, 95(6):e28877. DOI:10. 1002/jmv. 28877.

[24]Biswal M, Diggs S, Xu D, et al. Two conserved oligomer interfaces of NSP7 and NSP8 underpin the dynamic assembly of SARS-CoV-2 RdRP[J]. Nucleic Acids Res, 2021, 49(10):5956-5966. DOI:10. 1093/nar/gkab370.

[25]Reshamwala SMS, Likhite V, Degani MS, et al.Mutations in SARS-CoV-2 nsp7 and nsp8 proteins and their predicted impact on replication/transcription complex structure[J]. J Med Virol, 2021, 93(7):4616-4619. DOI:10. 1002/jmv. 26791.

[26]Sommers JA, Loftus LN, Jones MP, et al.Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions[J]. J Biol Chem, 2023, 299(3):102980. DOI:10. 1016/j. jbc. 2023. 102980.

[27]Chen J, Malone B, Llewellyn E, et al. Structural basis for helicase-polymerase coupling in the SARS-CoV-2replication-transcription complex[J]. Cell, 2020, 182(6):1560-1573. e13. DOI:10. 1016/j.cell. 2020. 07. 033.

[28]Abd-Elshafy DN, Nadeem R, Nasraa MH, et al.Analysis of the SARS-CoV-2nsp12 P323L/A529V mutations:coeffect in the transiently peaking lineage C. 36. 3 on protein structure and response to treatment in Egyptian records[J]. Z Für Naturforschung C, 2024, 79(1-2):13-24. DOI:10. 1515/znc-2023-0132.

[29]Kim SM, Kim EH, Casel MAB, et al. SARS-CoV-2variants with NSP12 P323L/G671S mutations display enhanced virus replication in ferret upper airways and higher transmissibility[J]. Cell Rep, 2023, 42(9):113077. DOI:10. 1016/j. celrep. 2023. 113077.

[30]Wang Q, Wu J, Wang H, et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase[J].Cell, 2020, 182(2):417-428. e13. DOI:10. 1016/j.cell. 2020. 05. 034.

[31]Brant AC, Tian W, Majerciak V, et al. SARS-CoV-2:from its discovery to genome structure, transcription,and replication[J]. Cell Biosci, 2021, 11(1):136.DOI:10. 1186/s13578-021-00643-z.

[32]Ogando NS, Ferron F, Decroly E, et al. The curious case of the nidovirus exoribonuclease:its role in RNA synthesis and replication fidelity[J]. Front Microbiol,2019, 10:1813. DOI:10. 3389/fmicb. 2019. 01813.

[33]Eckerle LD, Becker MM, Halpin RA, et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing[J]. PLoS Pathog, 2010, 6(5):e1000896. DOI:10. 1371/journal. ppat. 1000896.

基本信息:

DOI:10.13242/j.cnki.bingduxuebao.004577

中图分类号:R373.1

引用信息:

[1]边紫薇,刘蕊艳,欧阳灏童等.新冠病毒非选择性突变增加相关的非结构蛋白突变探究[J].病毒学报,2024,40(05):961-969.DOI:10.13242/j.cnki.bingduxuebao.004577.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文