nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 05 v.40 1121-1136
人工智能在宿主与病原体蛋白质互作预测中的应用进展
基金项目(Foundation): 重庆市教委科学技术研究项目(项目号:KJQN202300616),题目:面向宿主与病原菌互作的机器学习关键技术研究~~
邮箱(Email): liuchuan@cqupt.edu.cn;lina@cqupt.edu.cn;
DOI: 10.13242/j.cnki.bingduxuebao.004561
中文作者单位:

重庆邮电大学生命健康信息科学与工程学院大数据生物智能重庆市重点实验室;重庆邮电大学软件工程学院;

摘要(Abstract):

宿主与病原体之间的蛋白质-蛋白质互作(Host-pathogen protein-protein interaction,HP-PPI)是病原体感染宿主的关键分子事件,准确识别HP-PPI对于理解宿主的免疫防御机制、病原体的致病机制,以及研发抗感染药物都具有重要意义。近年来,蛋白质互作实验技术的发展及其在宿主与病原体互作研究中的应用,积累了大量的HPPPI数据,于是人工智能技术逐渐在HP-PPI预测研究领域中脱颖而出。本文综述了人工智能方法在HP-PPI预测研究领域中的应用,首先介绍了基于人工智能方法识别HP-PPI的任务流程,总结了收录HP-PPI数据的常用数据库;然后重点对机器学习和深度学习两大类人工智能方法在HP-PPI预测研究领域中的应用进行分类归纳,介绍了部分经典算法模型的基本原理、特征选择和模型评估结果等;最后,分析了人工智能方法预测HP-PPI面临的问题及挑战,以期为宿主与病原体互作研究领域的科研人员提供思路和参考。

关键词(KeyWords): 宿主-病原体互作;;蛋白质-蛋白质互作;;机器学习;;深度学习
参考文献 [1] Huttlin EL, Bruckner RJ, Paulo JA, et al. Architecture of the human interactome defines protein communities and disease networks[J]. Nature, 2017, 545:505-509.DOI:10. 1038/nature22366.
[2]石金凤,丁媛,陈子杨,等.病毒与宿主蛋白互作研究技术进展[J].动物医学进展,2021, 42(12):97-101.DOI:10. 16437/j. cnki. 1007-5038. 2021. 12. 017.
[3] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579:270-273. DOI:10. 1038/s41586-020-2012-7.
[4] Zhao Z, Xie Y, Bai B, et al. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants[J]. Nat Commun, 2023, 14:4405. DOI:10. 1038/s41467-023-39942-z.
[5]鲁荣光,武婧,白雪,等.新冠病毒SARS-CoV-2的感染机制研究进展[J].病毒学报,2020, 36(5):927-935. DOI:10. 13242/j. cnki. bingduxuebao. 003699.
[6] Lechuga A, Lood C, Berjón-Otero M, et al.Unraveling protein interactions between the temperate virus Bam35 and its Bacillus host using an integrative yeast two hybrid-high throughput sequencing approach[J]. Int J Mol Sci, 2021, 22(20):11105. DOI:10. 3390/ijms222011105.
[7]宾羽,张琦,王春庆,等.利用酵母双杂交系统筛选与柑橘黄化脉明病毒CP互作的寄主因子[J].中国农业科学,2023, 56(10):1881-1892.
[8] DeBlasio SL, Wilson JR, Tamborindeguy C, et al.Affinity purification-mass spectrometry identifies a novel interaction between a polerovirus and a conserved innate immunity aphid protein that regulates transmission efficiency[J]. J Proteome Res, 2021, 20(6):3365-3387. DOI:10. 1021/acs. jproteome. 1c00313.
[9]韩月雯,吴瑞,马超锋,等.风疹病毒衣壳蛋白与宿主细胞相互作用蛋白的初步筛选及分析[J].病毒学报,2021, 37(5):1074-1078. DOI:10. 13242/j. cnki.bingduxuebao. 004039.
[10]苏航,苏建国.草鱼呼肠孤病毒纤维蛋白VP56与草鱼GRP78蛋白互作诱导内质网应激[J].水产学报,2023, 47(9):099413. DOI:10. 11964/jfc. 20210712946.
[11]Harada M, Nagai J, Kurata R, et al. Establishment of novel protein interaction assays between Sin3 and REST using surface plasmon resonance and time-resolved fluorescence energy transfer[J]. Int J Mol Sci, 2021, 22(5):2323. DOI:10. 3390/ijms22052323.
[12]Réthi-Nagy Z,ábrahám E, Lipinszki Z. GST-IVTT pull-down:a fast and versatile in vitro method for validating and mapping protein-protein interactions[J].FEBS Open Bio, 2022, 12(11):1988-1995. DOI:10. 1002/2211-5463. 13485.
[13]高梦遥,赵志腾,李璐,等.十二指肠贾第虫Rab11互作蛋白的筛选[J].中国病原生物学杂志,2024, 19(1):25-31. DOI:10. 13350/j. cjpb. 240105.
[14]Duan Z, Li K, Duan W, et al. Probing membrane protein interactions and signaling molecule homeostasis in plants by F?rster resonance energy transfer analysis[J]. J Exp Bot, 2022, 73(1):68-77. DOI:10. 1093/jxb/erab445.
[15]Rozenblatt-Rosen O, Deo RC, Padi M, et al.Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins[J].Nature, 2012, 487:491-495. DOI:10. 1038/nature11288.
[16]Walch P, Selkrig J, Knodler LA, et al. Global mapping of Salmonella enterica-host protein-protein interactions during infection[J]. Cell Host Microbe, 2021, 29(8):1316-1332. e12. DOI:10. 1016/j. chom. 2021. 06. 004.
[17]Zhang TY, Chen YQ, Tan JC, et al. Global fungalhost interactome mapping identifies host targets of candidalysin[J]. Nat Commun, 2024, 15:1757. DOI:10. 1038/s41467-024-46141-x.
[18]Wanamaker SA, Garza RM, MacWilliams A, et al.CrY2H-seq:a massively multiplexed assay for deepcoverage interactome mapping[J]. Nat Meth, 2017,14:819-825. DOI:10. 1038/nmeth. 4343.
[19]Johnson KL, Qi Z, Yan Z, et al. Revealing proteinprotein interactions at the transcriptome scale by sequencing[J]. Mol Cell, 2021, 81(19):4091-4103.e9. DOI:10. 1016/j. molcel. 2021. 07. 006.
[20]Shah PS, Beesabathuni NS, Fishburn AT, et al.Systems biology of virus-host protein interactions:from hypothesis generation to mechanisms of replication and pathogenesis[J]. Annu Rev Virol, 2022, 9(1):397-415. DOI:10. 1146/annurev-virology-100520-011851.
[21]Matthews LR, Vaglio P, Reboul J, et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or“interologs”[J]. Genome Res, 2001, 11(12):2120-2126. DOI:10. 1101/gr. 205301.
[22]Deng M, Mehta S, Sun F, et al. Inferring domaindomain interactions from protein-protein interactions[C]//Proceedings of the sixth annual international conference on Computational biology. Washington DC USA. ACM, 2002:117-126. DOI:10. 1145/565196. 565211.
[23]Yang S, Li H, He H, et al. Critical assessment and performance improvement of plant–pathogen protein–protein interaction prediction methods[J]. Brief Bioinform, 2019, 20(1):274-287. DOI:10. 1093/bib/bbx123.
[24]Eid FE, ElHefnawi M, Heath LS. DeNovo:virus-host sequence-based protein–protein interaction prediction[J]. Bioinformatics, 2016, 32(8):1144-1150. DOI:10. 1093/bioinformatics/btv737.
[25]Dey L, Chakraborty S, Mukhopadhyay A. Machine learning techniques for sequence-based prediction of viral–host interactions between SARS-CoV-2 and human proteins[J]. Biomed J, 2020, 43(5):438-450. DOI:10. 1016/j. bj. 2020. 08. 003.
[26]Sun T, Zhou B, Lai L, et al. Sequence-based prediction of protein protein interaction using a deeplearning algorithm[J]. BMC Bioinform, 2017, 18(1):277. DOI:10. 1186/s12859-017-1700-2.
[27]Oughtred R, Rust J, Chang C, et al. The BioGRID database:a comprehensive biomedical resource of curated protein, genetic, and chemical interactions[J].Protein Sci, 2021, 30(1):187-200. DOI:10. 1002/pro. 3978.
[28]Durmu?Tekir S,?ak?r T, Ard??E, et al. PHISTO:pathogen–host interaction search tool[J].Bioinformatics, 2013, 29(10):1357-1358. DOI:10. 1093/bioinformatics/btt137.
[29]Ammari MG, Gresham CR, McCarthy FM, et al.HPIDB 2. 0:a curated database for host–pathogen interactions[J]. Database(Oxford), 2016,201610. 1093:database. DOI:10. 1093/database/baw103.
[30]Le TD, Nguyen PD, Korkin D, et al. PHILM2Web:a high-throughput database of macromolecular host–pathogen interactions on the Web[J]. Database(Oxford), 2022, 202210. 1093:database. DOI:10. 1093/database/baac042.
[31]Olson RD, Assaf R, Brettin T, et al. Introducing the Bacterial and Viral Bioinformatics Resource Center(BVBRC):a resource combining PATRIC, IRD and ViPR[J]. Nucleic Acids Res, 2023, 51(D1):D678-D689.DOI:10. 1093/nar/gkac1003.
[32]Guirimand T, Delmotte S, Navratil V. VirHostNet2. 0:surfing on the web of virus/host molecular interactions data[J]. Nucleic Acids Res, 2015, 43(D1):D583-D587. DOI:10. 1093/nar/gku1121.
[33]Ako-Adjei D, Fu W, Wallin C, et al. HIV-1, human interaction database:current status and new features[J].Nucleic Acids Res, 2015, 43(database issue):D566-D570. DOI:10. 1093/nar/gku1126.
[34]Yang X, Lian X, Fu C, et al. HVIDB:a comprehensive database for human–virus protein–protein interactions[J]. Brief Bioinform, 2021, 22(2):832-844. DOI:10. 1093/bib/bbaa425.
[35]Li S, Zhou W, Li D, et al. Comprehensive characterization of human–virus protein-protein interactions reveals disease comorbidities and potential antiviral drugs[J]. Comput Struct Biotechnol J, 2022,20:1244-1253. DOI:10. 1016/j. csbj. 2022. 03. 002.
[36]Cook HV, Doncheva NT, Szklarczyk D, et al.Viruses. STRING:a virus-host protein-protein interaction database[J]. Viruses, 2018, 10(10):E519.DOI:10. 3390/v10100519.
[37]Yue ZX, Yan TC, Xu HQ, et al. A systematic review on the state-of-the-art strategies for protein representation[J]. Comput Biol Med, 2023, 152:106440. DOI:10. 1016/j. compbiomed. 2022. 106440.
[38]Ofer D, Brandes N, Linial M. The language of proteins:NLP, machine learning&protein sequences[J]. Comput Struct Biotechnol J, 2021, 19:1750-1758. DOI:10. 1016/j. csbj. 2021. 03. 022.
[39]Pande A, Patiyal S, Lathwal A, et al. Pfeature:a tool for computing wide range of protein features and building prediction models[J]. J Comput Biol, 2023, 30(2):204-222. DOI:10. 1089/cmb. 2022. 0241.
[40]Xiao N, Cao DS, Zhu MF, et al. Protr/ProtrWeb:R package and web server for generating various numerical representation schemes of protein sequences[J].Bioinformatics, 2015, 31(11):1857-1859. DOI:10. 1093/bioinformatics/btv042.
[41]Liu B, Liu F, Wang X, et al. Pse-in-One:a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences[J]. Nucleic Acids Res, 2015, 43(W1):W65-W71. DOI:10. 1093/nar/gkv458.
[42]Chen Z, Zhao P, Li F, et al. iFeature:a Python package and web server for features extraction and selection from protein and peptide sequences[J].Bioinformatics, 2018, 34(14):2499-2502. DOI:10. 1093/bioinformatics/bty140.
[43]Liu B, Gao X, Zhang H. BioSeq-Analysis2. 0:an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches[J]. Nucleic Acids Res,2019, 47(20):e127. DOI:10. 1093/nar/gkz740.
[44]Chen Z, Zhao P, Li C, et al. iLearnPlus:a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization[J]. Nucleic Acids Res, 2021, 49(10):e60. DOI:10. 1093/nar/gkab122.
[45]Guevara-Barrientos D, Kaundal R. ProFeatX:a parallelized protein feature extraction suite for machine learning[J]. Comput Struct Biotechnol J, 2023, 21:796-801. DOI:10. 1016/j. csbj. 2022. 12. 044.
[46]Greener JG, Kandathil SM, Moffat L, et al. A guide to machine learning for biologists[J]. Nat Rev Mol Cell Biol, 2022, 23:40-55. DOI:10. 1038/s41580-021-00407-0.
[47]Rainio O, Teuho J, Klén R. Evaluation metrics and statistical tests for machine learning[J]. Sci Rep, 2024,14:6086. DOI:10. 1038/s41598-024-56706-x.
[48]Dyer MD, Murali TM, Sobral BW. Supervised learning and prediction of physical interactions between human and HIV proteins[J]. Infect Genet Evol, 2011,11(5):917-923. DOI:10. 1016/j.meegid. 2011. 02. 022.
[49]Zhou X, Park B, Choi D, et al. A generalized approach to predicting protein-protein interactions between virus and host[J]. BMC Genomics, 2018, 19(suppl 6):568. DOI:10. 1186/s12864-018-4924-2.
[50]Yang X, Yang S, Li Q, et al. Prediction of humanvirus protein-protein interactions through a sequence embedding-based machine learning method[J]. Comput Struct Biotechnol J, 2020, 18:153-161. DOI:10. 1016/j. csbj. 2019. 12. 005.
[51]Fang Y, Yang Y, Liu C. New feature extraction from phylogenetic profiles improved the performance of pathogen-host interactions[J]. Front Cell Infect Microbiol, 2022, 12:931072. DOI:10. 3389/fcimb. 2022. 931072.
[52]Mei S, Flemington EK, Zhang K. Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways:a case study on M. tuberculosis[J].BMC Genomics, 2018, 19(1):505. DOI:10. 1186/s12864-018-4873-9.
[53]Prasasty VD, Hutagalung RA, Gunadi R, et al.Prediction of human-Streptococcus pneumoniae proteinprotein interactions using logistic regression[J]. Comput Biol Chem, 2021, 92:107492. DOI:10. 1016/j.compbiolchem. 2021. 107492.
[54]Ozger ZB. A robust protein language model for SARSCoV-2 protein–protein interaction network prediction[J]. Artif Intell Med, 2023, 142:102574. DOI:10. 1016/j. artmed. 2023. 102574.
[55]Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods[J]. PLoS One, 2014, 9(11):e112034. DOI:10. 1371/journal. pone. 0112034.
[56]Kim B, Alguwaizani S, Zhou X, et al. An improved method for predicting interactions between virus and human proteins[J]. J Bioinform Comput Biol, 2017, 15(1):1650024. DOI:10. 1142/s0219720016500244.
[57]Alguwaizani S, Park B, Zhou X, et al. Predicting interactions between virus and host proteins using repeat patterns and composition of amino acids[J]. J Healthc Eng, 2018, 2018:1391265. DOI:10. 1155/2018/1391265.
[58]Karabulut OC, Karpuzcu BA, Türk E, et al. MLAdVInfect:a machine-learning based adenoviral infection predictor[J]. Front Mol Biosci, 2021, 8:647424. DOI:10. 3389/fmolb. 2021. 647424.
[59]Lian X, Yang S, Li H, et al. Machine-learning-based predictor of human-bacteria protein-protein interactions by incorporating comprehensive host-network properties[J]. J Proteome Res, 2019, 18(5):2195-2205. DOI:10. 1021/acs. jproteome. 9b00074.
[60]Zhang Z, Ye S, Wu A, et al. Prediction of the receptorome for the human-infecting virome[J]. Virol Sin, 2021, 36(1):133-140. DOI:10. 1007/s12250-020-00259-6.
[61]Ghosh N, Saha I, Gambin A. Interactome-based machine learning predicts potential therapeutics for COVID-19[J]. ACS Omega, 2023, 8(15):13840-13854. DOI:10. 1021/acsomega. 3c00030.
[62]Pitta JLLP, Vasconcelos CRDS, Wallau GDL, et al.In silico predictions of protein interactions between Zika virus and human host[J]. PeerJ, 2021, 9:e11770.DOI:10. 7717/peerj. 11770.
[63]Basit AH, Abbasi WA, Asif A, et al. Training hostpathogen protein-protein interaction predictors[J]. J Bioinform Comput Biol, 2018, 16(4):1850014. DOI:10. 1142/s0219720018500142.
[64]K?sesoy?,G?k M,?z C. A new sequence based encoding for prediction of host–pathogen protein interactions[J]. Comput Biol Chem, 2019, 78:170-177. DOI:10. 1016/j. compbiolchem. 2018. 12. 001.
[65]Asim MN, Fazeel A, Ibrahim MA, et al. MP-VHPPI:Meta predictor for viral host protein-protein interaction prediction in multiple hosts and viruses[J]. Front Med,2022, 9:1025887.DOI:10. 3389/fmed. 2022. 1025887.
[66]Chakraborty A, Mitra S, Bhattacharjee M, et al.Determining human-coronavirus protein-protein interaction using machine intelligence[J]. Med Nov Technol Devices, 2023, 18:100228. DOI:10. 1016/j.medntd. 2023. 100228.
[67]Mei S, Zhu H. AdaBoost based multi-instance transfer learning for predicting proteome-wide interactions between Salmonella and human proteins[J]. PLoS One, 2014, 9(10):e110488. DOI:10. 1371/journal.pone. 0110488.
[68]Asim MN, Ibrahim MA, Malik MI, et al. LGCAVHPPI:a local-global residue context aware viral-host protein-protein interaction predictor[J]. PLoS One,2022, 17(7):e0270275. DOI:10. 1371/journal.pone. 0270275.
[69]Ahmed I, Witbooi P, Christoffels A. Prediction of human-Bacillus anthracis protein–protein interactions using multi-layer neural network[J]. Bioinformatics,2018, 34(24):4159-4164. DOI:10. 1093/bioinformatics/bty504.
[70]Xie Z, Deng X, Shu K. Prediction of protein-protein interaction sites using convolutional neural network and improved data sets[J]. Int J Mol Sci, 2020, 21(2):E467. DOI:10. 3390/ijms21020467.
[71]Wang LW, Kafkas?,Jun C, et al. DeepViral:prediction of novel virus–host interactions from protein sequences and infectious disease phenotypes[J].Bioinformatics, 2021, 37(17):2722-2729. DOI:10. 1093/bioinformatics/btab147.
[72]Yang X, Yang S, Lian X, et al. Transfer learning via multi-scale convolutional neural layers for human–virus protein–protein interaction prediction[J].Bioinformatics, 2021, 37(24):4771-4778. DOI:10. 1093/bioinformatics/btab533.
[73]Kaundal R, Loaiza CD, Duhan N, et al. deepHPI:a comprehensive deep learning platform for accurate prediction and visualization of host–pathogen protein–protein interactions[J]. Brief Bioinform, 2022, 23(3):bbac125. DOI:10. 1093/bib/bbac125.
[74]Tsukiyama S, Hasan MM, Fujii S, et al. LSTMPHV:prediction of human-virus protein–protein interactions by LSTM with word2vec[J]. Brief Bioinform, 2021, 22(6):bbab228. DOI:10. 1093/bib/bbab228.
[75]朱景勇,李钧翔,李旭辉,等.深度学习在基于序列的蛋白质互作预测中的应用进展[J].合成生物学,2024, 5(1):88-106.
[76]Lanchantin J, Weingarten T, Sekhon A, et al. Transfer learning for predicting virus-host protein interactions for novel virus sequences[C]//Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. Gainesville Florida.ACM, 2021:1-10. DOI:10. 1145/3459930. 3469527.
[77]Tsukiyama S, Kurata H. Cross-attention PHV:Prediction of human and virus protein-protein interactions using cross-attention–based neural networks[J]. Comput Struct Biotechnol J, 2022, 20:5564-5573. DOI:10. 1016/j. csbj. 2022. 10. 012.
[78]Alley EC, Khimulya G, Biswas S, et al. Unified rational protein engineering with sequence-based deep representation learning[J]. Nat Meth, 2019, 16:1315-1322. DOI:10. 1038/s41592-019-0598-1.
[79]Rives A, Meier J, Sercu T, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences[J]. Proc Natl Acad Sci USA, 2021, 118(15):e2016239118. DOI:10. 1073/pnas. 2016239118.
[80]Elnaggar A, Heinzinger M, Dallago C, et al.ProtTrans:toward understanding the language of life through self-supervised learning[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10):7112-7127.DOI:10. 1109/TPAMI. 2021. 3095381.
[81]Madan S, Demina V, Stapf M, et al. Accurate prediction of virus-host protein-protein interactions via a Siamese neural network using deep protein sequence embeddings[J]. Patterns, 2022, 3(9):100551. DOI:10. 1016/j. patter. 2022. 100551.
[82]徐小放,杨春德,舒坤贤,等.基于BERT与TextCNN的抗菌肽识别方法[J].生物工程学报,2023, 39(4):1815-1824. DOI:10. 13345/j. cjb. 220878.
[83]Alakus TB, Turkoglu I. Prediction of viral-host interactions of COVID-19 by computational methods[J]. Chemom Intell Lab Syst, 2022, 228:104622.DOI:10. 1016/j. chemolab. 2022. 104622.
[84]Dong TN, Brogden G, Gerold G, et al. A multitask transfer learning framework for the prediction of virushuman protein-protein interactions[J]. BMC Bioinformatics, 2021, 22(1):572. DOI:10. 1186/s12859-021-04484-y.
[85]Koca MB, Nourani E, Abbaso?lu F, et al. Graph convolutional network based virus-human protein-protein interaction prediction for novel viruses[J]. Comput Biol Chem, 2022, 101:107755. DOI:10. 1016/j.compbiolchem. 2022. 107755.
[86]Li X, Han P, Chen W, et al. MARPPI:boosting prediction of protein–protein interactions with multiscale architecture residual network[J]. Brief Bioinform,2023, 24(1):bbac524. DOI:10. 1093/bib/bbac524.
[87]Xie P, Zhuang J, Tian G, et al. Emvirus:an embedding-based neural framework for human-virus protein-protein interactions prediction[J]. Biosaf Health, 2023, 5(3):152-158. DOI:10. 1016/j.bsheal. 2023. 04. 003.
[88]Blohm P, Frishman G, Smialowski P, et al. Negatome2. 0:a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis[J]. Nucleic Acids Res, 2014, 42(D1):D396-D400. DOI:10. 1093/nar/gkt1079.
[89]Porras P, Barrera E, Bridge A, et al. Towards a unified open access dataset of molecular interactions[J].Nat Commun, 2020, 11:6144. DOI:10. 1038/s41467-020-19942-z.
[90]Neumann D, Roy S, Minhas FUAA, et al. On the choice of negative examples for prediction of hostpathogen protein interactions[J]. Front Bioinform,2022, 2:1083292.DOI:10. 3389/fbinf. 2022. 1083292.
[91]Iuchi H, Kawasaki J, Kubo K, et al. Bioinformatics approaches for unveiling virus-host interactions[J].Comput Struct Biotechnol J, 2023, 21:1774-1784.DOI:10. 1016/j. csbj. 2023. 02. 044.
[92]Wang XW, Madeddu L, Spirohn K, et al. Assessment of community efforts to advance network-based prediction of protein–protein interactions[J]. Nat Commun, 2023, 14:1582. DOI:10. 1038/s41467-023-37079-7.
[93]Yang X, Yang S, Ren P, et al. Deep learning-powered prediction of human-virus protein-protein interactions[J]. Front Microbiol, 2022, 13:842976. DOI:10. 3389/fmicb. 2022. 842976.
[94]Lannelongue L, Inouye M. Pitfalls of machine learning models for protein–protein interaction networks[J].Bioinformatics, 2024, 40(2):btae012. DOI:10. 1093/bioinformatics/btae012.
[95]Nevers Y, Glover NM, Dessimoz C, et al. Protein length distribution is remarkably uniform across the tree of life[J]. Genome Biol, 2023, 24(1):135. DOI:10. 1186/s13059-023-02973-2.
[96]Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature,2021, 596:583-589. DOI:10. 1038/s41586-021-03819-2.
[97]Ahmed H, Howton TC, Sun Y, et al. Network biology discovers pathogen contact points in host proteinprotein interactomes[J]. Nat Commun, 2018, 9:2312.DOI:10. 1038/s41467-018-04632-8.
[98]Zheng W, Wuyun Q, Li Y, et al. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data[J]. Nat Meth, 2024, 21:279-289. DOI:10. 1038/s41592-023-02130-4.

基本信息:

DOI:10.13242/j.cnki.bingduxuebao.004561

中图分类号:Q939.9

引用信息:

[1]任碧燕,刘璐,舒坤贤等.人工智能在宿主与病原体蛋白质互作预测中的应用进展[J].病毒学报,2024,40(05):1121-1136.DOI:10.13242/j.cnki.bingduxuebao.004561.

基金信息:

重庆市教委科学技术研究项目(项目号:KJQN202300616),题目:面向宿主与病原菌互作的机器学习关键技术研究~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文