| 351 | 0 | 88 |
| 下载次数 | 被引频次 | 阅读次数 |
猪轮状病毒(Porcine rotavirus virus, PoRV)是哺乳仔猪病毒性肠炎和腹泻的主要病原体之一,给养猪业造成了重大的经济损失。2024年5月,山西某规模化猪场仔猪发生严重腹泻,为确定其致病病原,采集该猪场腹泻仔猪粪便样本,经RT-PCR初步鉴定为PoRV感染,利用MA-104细胞分离病毒,进行间接免疫荧光,并在电镜下观察形态特征,最终发现该病毒粒子直径约为65 nm,呈车轮状,符合PoRV粒子典型形态特征,确认成功分离鉴定了1株PoRV,并将其命名为SX2024。进行全基因组测序及分析,采用MEGA软件构建系统进化树,分析其基因型及遗传演化关系,发现该毒株的VP6基因序列与国内A群GD株的同源性为97.99%,基于VP4和VP7基因序列分析表明,SX2024毒株与P[23]基因型和G9基因型相似性最高,结合其他基因组系统进化树分析,最后确认该分离株为G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1型,遗传进化分析显示该毒株的VP1基因序列与人源轮状病毒相应基因序列同源性最高,提示该毒株可能是猪-人重配毒株。同时,利用该病毒进行乳鼠致病性实验,表现出明显的腹泻症状。本试验结果丰富了PoRV基因组学和分子流行病学的相关研究资料,为PoRV的致病性和分子生物学特性的研究以及PoRV G9优势基因型新疫苗的研发奠定了基础,为PoRV的防控提供了数据支持。
Abstract:Porcine rotavirus(PoRV) is a major etiological agent of viral enteritis and diarrhea in suckling piglets, causing substantial economic losses to the swine industry. In May 2024, a severe outbreak of diarrhea occurred in suckling piglets at a large-scale pig farm in Shanxi Province, China. Fecal samples from diarrheic piglets were collected for pathogen identification. Reverse transcription-polymerase chain reaction(RT-PCR) confirmed PoRV infection. The virus was subsequently isolated in MA-104 cells, examined by indirect immunofluorescence assay, and observed under electron microscopy. The virions measured approximately 65 nm in diameter and displayed characteristic wheel-like morphology, consistent with typical PoRV particles. The isolate was designated SX2024. Whole-genome sequencing and phylogenetic analysis were conducted using MEGA software. The VP6 gene of SX2024 shared 97.99% nucleotide identity with that of the domestic Group A GD strain. Based on VP4 and VP7 sequences, SX2024 showed the highest similarity to the P[23] and G9 genotypes, respectively. Comprehensive genome-wide phylogenetic analysis identified the strain as G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Notably, the VP1 gene exhibited the highest homology with human rotavirus sequences, suggesting that SX2024 is a porcine-human reassortant strain. In pathogenicity assays, neonatal mice inoculated with SX2024 developed marked diarrhea. These results expand the genomics and molecular epidemiological data on PoRV, enhance understanding of its pathogenic and molecular features, and provide essential information for the development of new vaccines targeting the predominant G9 genotype, thereby supporting prevention and control strategies in the swine industry.
[1]李元新,陈伯祥,赵子惠,等.猪轮状病毒病诊断与防控研究进展[J].畜牧兽医杂志,2022, 41(05):58-61+64. DOI:10.3969/j.issn.1004-6704.2022.05.018.
[2]宗国伟.猪轮状病毒病的综合防治措施[J].养猪,2024,(03):66-67. DOI:10.13257/j.cnki.21-1104/s.2024.03.012.
[3]陈晨,李红梅.轮状病毒与大肠杆菌共感染引起仔猪腹泻的诊治试验[J].山东畜牧兽医,2023, 44(7):12-15. DOI:10.3969/j.issn.1007-1733.2023.07.004.
[4] Li C, Lu H, Geng C, et al. Epidemic and evolutionary characteristics of swine enteric viruses in south-Central China from 2018 to 2021[J]. Viruses, 2022, 14(7):1420. DOI:10.3390/v14071420.
[5] Tao R, Chang X, Zhou J, et al. Molecular epidemiological investigation of group A porcine rotavirus in East China[J]. Front Vet Sci, 2023, 10:1138419. DOI:10.3389/fvets.2023.1138419.
[6] Sadiq A, Bostan N, Yinda KC, et al. Rotavirus:Genetics, pathogenesis and vaccine advances[J]. Rev Med Virol, 2018, 28(6):e2003. DOI:10.1002/rmv.2003.
[7] Matthijnssens J, Attoui H, Bányai K, et al. ICTV virus taxonomy profile:Spinareoviridae 2022[J]. J Gen Virol, 2022, 103(11). DOI:10.1099/jgv.0.001781.
[8] Troeger C, Khalil IA, Rao PC, et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years[J]. JAMA Pediatr, 2018, 172(10):958-965. DOI:10.1001/jamapediatrics.2018.1960.
[9] Matthijnssens J, Otto PH, Ciarlet M, et al. VP6-sequence-based cutoff values as a criterion for rotavirus species demarcation[J]. Arch Virol, 2012, 157(6):1177-1182. DOI:10.1007/s00705-012-1273-3.
[10]Joshi MS, Walimbe AM, Arya SA, et al. Evolutionary analysis of all eleven genes of species C rotaviruses circulating in humans and domestic animals[J]. Mol Phylogenet Evol, 2023, 186:107854. DOI:10.1016/j.ympev.2023.107854.
[11]Mihalov-Kovács E, Gellértá,Marton S, et al.Candidate new rotavirus species in sheltered dogs,Hungary[J]. Emerg Infect Dis, 2015, 21(4):660-663. DOI:10.3201/eid2104.141370.
[12]Trojnar E, Sachsenr?der J, Twardziok S, et al.Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses[J]. J Gen Virol, 2013, 94(Pt1):136-142. DOI:10.1099/vir.0.047381-0.
[13]熊光萍,田毅,范佳欣,等.中国中南部G8P[8]型A组轮状病毒全基因组遗传特征研究[J].病毒学报,2024, 40(01):27-37. DOI:10.13242/j.cnki.bingduxuebao.004452.
[14]Matthijnssens J, Ciarlet M, Heiman E, et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains[J]. J Virol, 2008, 82(7):3204-3219.DOI:10.1128/JVI.02257-07.
[15]Matthijnssens J, Ciarlet M, Rahman M, et al.Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments[J].Arch Virol, 2008, 153(8):1621-1629. DOI:10.1007/s00705-008-0155-1.
[16]Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, et al. Changes in small intestinal homeostasis,morphology, and gene expression during rotavirus infection of infant mice[J]. J Virol, 2003, 77(24):13005-13016. DOI:10.1128/jvi.77.24.13005-13016.2003.
[17]Bohl EH, Theil KW, Saif LJ. Isolation and serotyping of porcine rotaviruses and antigenic comparison with other rotaviruses[J]. J Clin Microbiol, 1984, 19(2):105-111. DOI:10.1128/jcm.19.2.105-111.1984.
[18]de Sautu M, Herrmann T, Scanavachi G, et al. The rotavirus VP5*/VP8*conformational transition permeabilizes membranes to Ca2[J]. PLoS Pathog,2024, 20(4):e1011750. DOI:10.1371/journal.ppat.1011750.
[19]Luo S, Chen X, Yan G, et al. Emergence of humanporcine reassortment G9P[19] porcine rotavirus A strain in Guangdong Province, China[J]. Front Vet Sci, 2022, 9:1111919. DOI:10.3389/fvets.2022.1111919.
[20]Memon AM, Chen F, Khan SB, et al. Development and evaluation of polyclonal antibodies based antigen capture ELISA for detection of porcine rotavirus[J].Anim Biotechnol, 2023, 34(5):1807-1814. DOI:10.1080/10495398.2022.2052304.
[21]李丹地,徐子乾,谢广成,等.确认我国轮状病毒疫苗株LLR基因型为G10P[15][J].病毒学报,2015, 31(02):170-173. DOI:10.13242/j.cnki.bingduxuebao.002642.
[22]时洪艳,陈建飞,王承宝,等.猪轮状病毒Rotavirus A pig/China/NMTL/2009/G9P[23]株的分离与鉴定[J].中国预防兽医学报,2011, 33(9):681-684. DOI:10.3969/j.issn.1008-0589.2011.09.04.
[23]柳佳佳,梁海英,曾智勇,等.贵州1株G9P[23]型猪A群轮状病毒的分离鉴定及基因组序列分析[J].中国兽医学报,2024, 44(5):900-906, 913. DOI:10.16303/j.cnki.1005-4545.2024.05.04.
[24]Shao L, Fischer DD, Kandasamy S, et al. Comparative in vitro and in vivo studies of porcine rotavirus G9P[13] and human rotavirus wa G1P[8[J]. J Virol,2016, 90(1):142-151. DOI:10.1128/jvi.02401-15.
[25]Ghonaim AH, Yi G, Lei M, et al. Isolation,characterization and whole-genome analysis of G9 group a rotaviruses in China:Evidence for possible PorcineHuman interspecies transmission[J]. Virology, 2024,597:110129. DOI:10.1016/j.virol.2024.110129.
[26]Sadiq A, Khan J, Basit A, et al. Rotavirus genotype dynamics in Pakistan:G9 and G12 emerging as dominant strains in vaccinated children(2019)[J]. Acta Trop, 2024, 257:107300. DOI:10.1016/j.actatropica.2024.107300.
[27]谢力,曾韦锟,贾静,等.被动免疫轮状病毒NSP4&VP7双抗原重组腺病毒对感染乳鼠的排毒保护作用[J].病毒学报,2021, 37(6):1341-1347. DOI:10.13242/j.cnki.bingduxuebao.004053.
[28]邓慧,韩楠,陶然,等. G4P[23]型猪轮状病毒的基因组序列分析及其对乳鼠和仔猪的致病性研究[J/OL].中国人兽共患病学报,1-13[2025-08-15]. https://link.cnki.net/urlid/35.1284.r.20250331.1016.002.
[29]桑卡娜,杨绒娟,胡惠君,等.猪轮状病毒OSU株对乳鼠的致病性[J].中国兽医杂志,2024, 60(6):47-53. DOI:10.20157/j.cnki.zgsyzz.2024.06.007.
基本信息:
DOI:10.13242/j.cnki.bingduxuebao.250142
中图分类号:S852.651
引用信息:
[1]倪书婷,吴琼,杨克礼,等.山西1株A群G9P[23]型猪轮状病毒SX2024的分离鉴定、全基因组特征与乳鼠致病性分析[J].病毒学报,2025,41(05):1499-1510.DOI:10.13242/j.cnki.bingduxuebao.250142.
基金信息:
湖北省农业科技创新中心资助项目(项目号:2024-620-000-001-013),题目:家畜疫病防控~~