198 | 0 | 317 |
下载次数 | 被引频次 | 阅读次数 |
建立一种新型冠状病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)S1、S2、NTD蛋白特异性B细胞及其亚型的标记技术,该技术可通过与流式细胞术联用检测抗原特异性B细胞及其亚型含量,或与10×免疫组库联用对抗原特异性B细胞进行测序。首先,测试最佳蛋白使用浓度:将生物素标记的S1、S2和NTD蛋白按照600 nmol/L、1 200 nmol/L、2 400 nmol/L、3 600 nmol/L和4 800 nmol/L分别与荧光素-亲和素偶联,通过流式检测S1+CD19+B、S2+CD19+B、NTD+CD19+B细胞占比,确定不同蛋白对应的最佳使用浓度;进一步优化生物素-蛋白与荧光素-亲和素的比例:将检测生物素-蛋白与荧光-亲和素的摩尔比分别按照4∶1,5∶1和6∶1比例测试,对小鼠脾脏S1+CD19+B、S2+CD19+B、NTD+CD19+B细胞及S1+CD19+CD27+B、S2+CD19+CD27+B、NTD+CD19+CD27+B细胞的检测效果,优化荧光素-亲和素的最佳使用量;通过测试BV421、Super Bright 600、PE、PE/Cy7和APC等荧光对小鼠脾细胞的非特异结合能力,选择非特异结合较弱的荧光;根据筛选的荧光,给生物素化的S1、S2和NTD均标记PE和APC荧光,建立检测这3个蛋白特异性B细胞和记忆B细胞的方法,并测试带核酸序列的荧光素-亲和素对B细胞和记忆B细胞的检测效果,测试该方法的稳定性。S1、S2和NTD蛋白浓度分别为4 800 nmol/L、3 600 nmol/L和3 600 nmol/L时,对B细胞的检测效果最佳,且对阴性小鼠的染色效果较低;生物素-S1蛋白与荧光素-亲和素的最佳摩尔比为6∶1时,检测结果最佳;生物素-S2蛋白、生物素-NTD蛋白与荧光素-亲和素均在4:1时,检测结果最佳,且在该浓度下BV421、APC、Super Bright 600、PE与细胞的非特异结合较弱;建立了一种检测SARS-CoV-2 S1、S2和NTD抗原特异性B细胞及记忆B细胞的方法,通过对一批样本的重复3次检测,发现该方法较为稳定,CV值≤20%。通过抗原特异性B细胞标记技术,实现了对SARS-CoV-2S1、S2和NTD蛋白特异性B细胞及其亚型标记技术方法,并且具有良好的适用性,可用于与流式细胞术检测抗原特异性B细胞及记忆B细胞和10×免疫组库测序联合使用。
Abstract:To establish a labeling method for spike(S)1-, S2-, and N-terminal domain(NTD)-specific B cells(and their subtypes) of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). This method could be used with flow cytometry to test, or in 10 × immune repertoire sequence to obtain the sequence of antigen-specific B cells and their subtypes. First, S1, S2, and NTD proteins were coupled with fluorescein –streptavidin(600, 1200, 2400, 3600 and 4800 nmol/L), respectively. Antigen-specific B cells were detected by flow cytometry to determine the optimal concentration. Second, the molar ratio of biotin – protein and fluorescein – streptavidin was tested at ratios of 4: 1, 5: 1, and 6: 1, respectively. According to the ratio of S1+cluster of differentiation(CD)19+B cells, S2+CD19+B cells, NTD+CD19+B cells, as well as S1+CD19+CD27+B cells, S2+CD19+CD27+B cells, and NTD+CD19+CD27+B cells, the optimal concentration was obtained. Third, the non-specific effects of different types of fluorescein(BV421, Super Bright 600, PE, PE/Cy7 and APC) were tested to evaluate their non-specific binding. Fourth, the established method was repeated thrice to test its stability in flow cytometry. We also tested it with fluorescein– avidin–biotin-containing nucleotide sequences which could be used in a 10 × immune repertoire sequence. First, the optimal concentrations(in nmol/L) of S1, S2, and NTD proteins were 4800, 3600, and 3600 nmol/L, respectively. Second, the optimal molar ratio of biotin–S1 protein to fluorescein–avidin was 6: 1, whereas the most suitable molar ratio of biotin – S2 protein and biotin – NTD protein to fluorescein – avidin was 4: 1, respectively. At this concentration, BV421, APC, Super Bright 600, and PE showed weak non-specific binding. Third, repeating this method thrice showed it to be highly stable, with a coefficient of variation of ≤20%, and it was suitable for fluorescein – avidin – biotin-containing nucleotide sequences. The established labeling technology for S1-, S2-, and NTD protein-specific B cells(and their subtypes) of SARS-CoV-2 was relatively stable, and could be used in conjunction with flow cytometry and 10 × immune repertoire sequencing.
[1] Wang J, Deng C, Liu M, et al. A fourth dose of the inactivated SARS-CoV-2 vaccine redistributes humoral immunity to the N-terminal domain[J]. Nat Commun,2022, 13(1):6866. DOI:10. 1038/s41467-022-34633-7.
[2] Zhang J, He Q, An C, et al. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2vaccine[J]. Emerg Microbes Infect, 2021, 10(1):1598–1608. DOI:10. 1080/22221751. 2021. 1957401.
[3] Kaku CI, Champney ER, Normark J, et al. Broad anti–SARS-CoV-2 antibody immunity induced by heterologous ChAdOx1/mRNA-1273 vaccination[J].Science, 2022, 375(6584):1041–1047. DOI:10. 1126/science. abn2688.
[4] Ai J, Guo J, Zhang H, et al. Cellular basis of enhanced humoral immunity to SARS-CoV-2 upon homologous or heterologous booster vaccination analyzed by single-cell immune profiling[J]. Cell Discov, 2022, 8(1):114.DOI:10. 1038/s41421-022-00480-5.
[5] He Q, Mao Q, An C, et al. Heterologous prime-boost:breaking the protective immune response bottleneck of COVID-19 vaccine candidates[J]. Emerg Microbes Infect, 2021, 10(1):629–637. DOI:10. 1080/22221751. 2021. 1902245.
[6] Setliff I, Shiakolas AR, Pilewski KA, et al. Highthroughput mapping of B cell receptor sequences to antigen specificity[J]. Cell, 2019, 179(7):1636-1646.e15. DOI:10. 1016/j. cell. 2019. 11. 003.
[7] He B, Liu S, Wang Y, et al. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq[J]. Signal Transduct Target Ther, 2021, 6(1):195.DOI:10. 1038/s41392-021-00610-7.
基本信息:
DOI:10.13242/j.cnki.bingduxuebao.004548
中图分类号:R392-33
引用信息:
[1]宋彦丽,杨惠洁,赵玉秀等.新型冠状病毒S1、S2和NTD抗原特异性B细胞及其亚型标记技术的建立与应用[J].病毒学报,2024,40(04):679-686.DOI:10.13242/j.cnki.bingduxuebao.004548.
基金信息: