nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.41 23-32
BCR免疫组库分析SARS-CoV-2疫苗同源及异源免疫B细胞应答差异
基金项目(Foundation):
邮箱(Email): changguili@aliyun.com;
DOI: 10.13242/j.cnki.bingduxuebao.004633
摘要:

比较新型冠状病毒(Severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)灭活疫苗(Inactivated vaccine, In)和腺病毒载体疫苗(Adenoviral vector vaccine, Ad)同源和异源免疫引起的B细胞抗原受体(B-cell receptor, BCR)差异,探究SARS-CoV-2疫苗异源加强引起的抗体应答增强的原因。分别给小鼠同源免疫灭活疫苗In~4In、异源免疫3InAd,并于每次免疫10 d后采外周血检测各组血清针对SARS-CoV-2原型株和XBB.1.16变异株的中和抗体水平;提取同源和异源免疫后小鼠脾脏RNA,逆转录为cDNA后,对BCR重链的CDR3区序列进行BCR免疫组库测序,分析同源和异源免疫策略中CDR3的氨基酸长度多样性、V基因使用频率、V-J基因配对频率、BCR克隆多样性和克隆扩增水平。结果显示,异源3InAd组引起的针对原型株和XBB.1.16毒株的中和抗体水平显著高于同源免疫组;3InAd组CDR3氨基酸长度分布与同源免疫In~4In组不同;3InAd组V基因IGHV11-1、IGHV4-2使用频率显著高于同源4In组,IGHV5-6基因的使用频率低于4In组,IGHV9-3基因的使用频率在同源和异源免疫组无差异;同源免疫In~4In后,BCR克隆种类逐渐丰富,但BCR top 50的频率逐渐降低;3InAd组BCR种类丰富性与4In组相比没有明显增加,BCR top 50的频率逐渐增加,表明异源免疫增加了主要BCR克隆的扩增。本研究发现SARS-CoV-2异源免疫改变了B细胞CDR3长度、V基因频率、V-J基因配对频率、BCR种类多样性和BCR克隆扩增水平。

Abstract:

We wished to compare differences in homologous vaccination and heterologous vaccination of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) and explore the mechanisms of antibody enhancement in heterologous immunization. Mice underwent homologous immunization with 1–4 doses In, or heterologous vaccination with 3InAd. Blood was collected 10 days after each vaccination. Then, neutralizing antibodies against the prototype strains of SARS-CoV-2 and the XBB.1.16 variant in each group were detected.RNA was extracted from homologous and heterologous groups and reverse-transcribed into complementary-DNA. Then, complementarity-determining region 3(CDR3) of the B-cell receptor(BCR) heavy chain was sequenced. Diversity in the amino-acid length, frequency of V gene usage, frequency of V – J gene pairing, BCR clonal diversity, and clonal expansion CDR3 in homologous and heterologous strategies were analyzed.Compared with homologous groups, the heterologous 3InAd group showed significantly higher neutralizing antibody titers against prototype and XBB.1.16 strains. The distribution of amino-acid length of CDR3 in the 3InAd group was different from that in the homologous group. Frequencies of IGHV11-1 and IGHV4-2 in the V gene in the 3InAd group were significantly higher than those in the 4In group. The frequencies of IGHV5– 6genes were lower than those in the 4In group. There were no differences in the frequencies of IGHV9-3 between the 3InAd group and 4In group. The diversity of BCR clones was increased, but the frequencies of the BCR top-50 was decreased gradually in homologous In – 4In groups. In the 3InAd group, the diversity of BCR did not increase significantly compared with that in the 4In group, but BCR top-50 expansion increased, indicating that heterologous immunization increased the expansion of major BCR clones. We concluded that SARS-CoV-2heterologous immunization changes B-cell CDR3 length, frequencies of V-gene usage and V– J gene pairing, as well as the diversity of BCR species and expansion of BCR clones.

参考文献

[1] Gra?a C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID-19 vaccines[J]. Cochrane Database Syst Rev, 2022, 12∶CD015477. DOI∶10. 1002/14651858. cd015477.

[2] Wu S, Huang J, Zhang Z, et al. Safety, tolerability,and immunogenicity of an aerosolised adenovirus type-5vector-based COVID-19 vaccine(Ad5-nCoV)in adults∶preliminary report of an open-label and randomised phase 1 clinical trial[J]. Lancet Infect Dis, 2021, 21(12)∶1654-1664. DOI∶10. 1016/S1473-3099(21)00396-0.

[3] Kurahashi Y, Sutandhio S, Furukawa K, et al. Crossneutralizing breadth and longevity against SARS-CoV-2variants after infections[J]. Front Immunol, 2022, 13∶773652. DOI∶10. 3389/fimmu. 2022. 773652.

[4] Luan N, Wang Y, Cao H, et al. Comparison of immune responses induced by two or three doses of an alum-adjuvanted inactivated SARS-CoV-2 vaccine in mice[J]. J Med Virol, 2022, 94(5)∶2250-2258. DOI∶10. 1002/jmv. 27637.

[5] He Q, Mao Q, An C, et al. Heterologous prime-boost∶breaking the protective immune response bottleneck of COVID-19 vaccine candidates[J]. Emerg Microbes Infect, 2021, 10(1)∶629-637. DOI∶10. 1080/22221751. 2021. 1902245.

[6] Rice A, Verma M, Voigt E, et al. Heterologous saRNA prime, DNA dual-antigen boost SARS-CoV-2vaccination elicits robust cellular immunogenicity and cross-variant neutralizing antibodies[J]. Front Immunol, 2022, 13∶910136. DOI∶10. 3389/fimmu. 2022. 910136.

[7] Ai J, Guo J, Zhang H, et al. Cellular basis of enhanced humoral immunity to SARS-CoV-2 upon homologous or heterologous booster vaccination analyzed by single-cell immune profiling[J]. Cell Discov, 2022, 8∶114. DOI∶10. 1038/s41421-022-00480-5.

[8] Li X, Zeng F, Yue R, et al. Heterologous booster immunization based on inactivated SARS-CoV-2 vaccine enhances humoral immunity and promotes BCR repertoire development[J]. Vaccines(Basel), 2024, 12(2)∶120. DOI∶10. 3390/vaccines12020120.

[9]姜琼,郑文红,王晨辉,等. BCR组库分析乙肝疫苗接种反应及初步机理分析[J].免疫学杂志,2017, 33(9)∶743-748. DOI∶10. 13431/j. cnki. immunol.j. 20170131.

[10]侯显良,汤冬娥,蔡晚霞,等.系统性红斑狼疮的TCR免疫组库研究进展[J].临床医学工程,2021, 28(1)∶63–65.

[11]Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery[J]. Trends Immunol,2021, 42(12)∶1143-1158. DOI∶10. 1016/j.it. 2021. 10. 008.

[12]Xu JL, Davis MM. Diversity in the CDR3 region of VH is sufficient for most antibody specificities[J].Immunity, 2000, 13(1)∶37-45. DOI∶10. 1016/S1074-7613(00)00006-6.

[13]Rock EP, Sibbald PR, Davis MM, et al. CDR3 length in antigen-specific immune receptors[J]. J Exp Med,1994, 179(1)∶323-328. DOI∶10. 1084/jem. 179. 1. 323.

[14]Barbas CF, Bain JD, Hoekstra DM, et al.Semisynthetic combinatorial antibody libraries∶a chemical solution to the diversity problem[J]. Proc Natl Acad Sci USA, 1992, 89(10)∶4457-4461. DOI∶10. 1073/pnas. 89. 10. 4457.

[15]Luo S, Jing C, Ye AY, et al. Humanized V(D)Jrearranging and TdT-expressing mouse vaccine models with physiological HIV-1 broadly neutralizing antibody precursors[J]. Proc Natl Acad Sci USA, 2023, 120(1)∶e2217883120. DOI∶10. 1073/pnas. 2217883120.

[16]Cao Y, Wang J, Jian F, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies[J]. Nature, 2022, 602∶657-663. DOI∶10. 1038/s41586-021-04385-3.

[17]Skinner NE, Ogega CO, Frumento N, et al.Convergent antibody responses are associated with broad neutralization of hepatitis C virus[J]. Front Immunol,2023, 14∶1135841.DOI∶10. 3389/fimmu. 2023. 1135841.

[18]Yang X, Chi H, Wu M, et al. Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and highthroughput single-cell V(D)J sequencing[J]. Front Immunol, 2022, 13∶992787. DOI∶10. 3389/fimmu. 2022. 992787.

[19]Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature, 2020, 584∶115-119. DOI∶10. 1038/s41586-020-2380-z.

[20]Funakoshi Y, Ohji G, Yakushijin K, et al. Massive surge of mRNA expression of clonal B-cell receptor in patients with COVID-19[J]. Heliyon, 2021, 7(8)∶e07748. DOI∶10. 1016/j. heliyon. 2021. e07748.

[21]Ravi V, Saxena S, Panda PS. Basic virology of SARSCoV 2[J]. Indian J Med Microbiol, 2022, 40(2)∶182-186. DOI∶10. 1016/j. ijmmb. 2022. 02. 005.

[22]Liu L, Wang P, Nair MS, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2spike[J]. Nature, 2020, 584∶450-456. DOI∶10. 1038/s41586-020-2571-7.

[23]Teijaro JR, Farber DL. COVID-19 vaccines∶modes of immune activation and future challenges[J]. Nat Rev Immunol, 2021, 21∶195-197. DOI∶10. 1038/s41577-021-00526-x.

[24]Sprent J, King C. COVID-19 vaccine side effects∶The positives about feeling bad[J]. Sci Immunol, 2021, 6(60)∶eabj9256. DOI∶10. 1126/sciimmunol. abj9256.

[25]Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract[J]. Immunity, 2022, 55(5)∶749-780.DOI∶10. 1016/j. immuni. 2022. 04. 013.

[26]He R, Zheng X, Zhang J, et al. SARS-CoV-2 spikespecific TFH cells exhibit unique responses in infected and vaccinated individuals[J]. Signal Transduct Target Ther, 2023, 8∶393. DOI∶10. 1038/s41392-023-01650-x.

[27]Zou P, Zhang P, Deng Q, et al. Two novel adenovirus vectors mediated differential antibody responses via interferon-α and natural killer cells[J]. Microbiol Spectr, 2023, 11(4)∶e0088023. DOI∶10. 1128/spectrum. 00880-23.

基本信息:

DOI:10.13242/j.cnki.bingduxuebao.004633

中图分类号:R392

引用信息:

[1]宋彦丽,孙誉芳,鲍春婷等.BCR免疫组库分析SARS-CoV-2疫苗同源及异源免疫B细胞应答差异[J].病毒学报,2025,41(01):23-32.DOI:10.13242/j.cnki.bingduxuebao.004633.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文