nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 05 v.40 1137-1150
循环miRNAs在COVID-19并发心血管系统疾病中的研究进展
基金项目(Foundation): 甘肃省自然科学基金(项目号:GSWSKY2023-47),题目:SARS-CoV-2 S蛋白通CyPa/CD147激活TLR3信号通路诱发心肌炎的机制研究;甘肃省自然科学基金(项目号:21JR1RA181),题目:COVID-19靶向CyPa/CD147信号通路诱导心肌细胞凋亡机制研究~~
邮箱(Email): 22785439@qq.com;LQBZBD940ML@126.com;
DOI: 10.13242/j.cnki.bingduxuebao.004568
中文作者单位:

中国人民解放军联勤保障部队第九四〇医院心血管内科;中国医学科学院,北京协和医学院国家心血管病中心阜外医院心血管内科;甘肃中医药大学第一临床医学院;

摘要(Abstract):

新型冠状病毒感染疫情对全球医疗救治体系提出了前所未有的严峻考验,尽管当前疫情传播得到有效控制,但是新型冠状病毒感染相关并发症以及“长新冠综合征”给健康带来的负面效应仍不容忽视,尤其是心血管循环系统更是严重急性呼吸综合征冠状病毒2易感的靶器官。微小RNA是调节重要生物学进程的内源性小分子单链非编码RNA,已证实微小RNA在心血管疾病的发生发展进程中扮演重要角色,并且循环微小RNA差异表达与新型冠状病毒感染并发心血管系统疾病密切相关,然而循环微小RNA在疾病病理进展中的作用机制尚不明确。因此,本文综述了循环微小RNA在新型冠状病毒感染并发心血管系统疾病中的作用及相关机制,同时对基于循环微小RNA为靶点的诊疗策略进行展望,以期为新型冠状病毒感染并发心血管系统疾病的防治提供新思路。

关键词(KeyWords): 微小RNA;;循环miRNA;;新型冠状病毒;;新型冠状病毒感染;;心血管系统疾病
参考文献 [1] Yuan Y, Jiao B, Qu L, et al. The development of COVID?19 treatment[J]. Front Immunol, 2023, 14:1125246. DOI:10. 3389/fimmu. 2023. 1125246.
[2] Gra?a C, Ghosn L, Evrenoglou T, et al. Efficacy and safety of COVID?19 vaccines[J]. Cochrane Database Syst Rev, 2022, 12:CD015477. DOI:10. 1002/14651858. cd015477.
[3] Chaturvedi R, Lui B, Aaronson JA, et al. COVID?19complications in males and females:recent developments[J]. J Comp Eff Res, 2022, 11(9):689?698. DOI:10. 2217/cer?2022?0027.
[4]周丽平,余锂镭,江洪.《2022年ACC成年COVID?19心血管后遗症(心肌炎和其他心肌受累、SARS?CoV?2感染的急性后遗症)及恢复运动的临床决策路径专家共识》解读[J].中华心血管病杂志,2023, 51(4):421?425.
[5] Zuin M, Rigatelli G, Battisti V, et al. Increased risk of acute myocardial infarction after COVID?19 recovery:a systematic review and meta?analysis[J]. Int J Cardiol,2023, 372:138?143. DOI:10. 1016/j.ijcard. 2022. 12. 032.
[6] Liuzzo G, Volpe M. SARS?CoV?2 infection markedly increases long?term cardiovascular risk[J]. Eur Heart J,2022, 43(20):1899?1900. DOI:10. 1093/eurheartj/ehac168.
[7] Tangos M, Budde H, Kolijn D, et al. SARS?CoV?2infects human cardiomyocytes promoted by inflammation and oxidative stress[J]. Int J Cardiol, 2022, 362:196?205. DOI:10. 1016/j. ijcard. 2022. 05. 055.
[8] Pieri M, Vayianos P, Nicolaidou V, et al. Alterations in circulating miRNA levels after infection with SARS?CoV?2 could contribute to the development of cardiovascular diseases:what we know so far[J]. Int J Mol Sci, 2023, 24(3):2380. DOI:10. 3390/ijms24032380.
[9]闫静静,迟晓妍,卢佳琪,等. SARS?CoV?2结构蛋白S和N的生物信息学比较分析及应用研究[J].中国病原生物学杂志,2023, 18(4):377?384. DOI:10. 13350/j. cjpb. 230402.
[10]Meekins DA, Gaudreault NN, Richt JA. Natural and experimental SARS?CoV?2 infection in domestic and wild animals[J]. Viruses, 2021, 13(10):1993. DOI:10. 3390/v13101993.
[11]Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579:270?273. DOI:10. 1038/s41586?020?2012?7.
[12]D?rmaku?Sopjani M, Sopjani M. Molecular characterization of SARS?CoV?2[J]. Curr Mol Med,2021, 21(7):589?595. DOI:10. 2174/1566524020999201203213037.
[13]邹婧瑜,郑重,孙欣,等.新型冠状病毒的人兽共患病特性研究进展[J].中国人兽共患病学报,2023, 39(2):147?152. DOI:10. 3969/j. issn. 1002?2694. 2022. 00. 195.
[14]乔嘉璐,彭倩,翟莹,等. SARS?CoV?2入侵细胞的研究进展[J].病毒学报,2021, 37(2):415?421. DOI:10. 13242/j. cnki. bingduxuebao. 003856.
[15]Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS?CoV?2 entry into cells[J]. Nat Rev Mol Cell Biol, 2022, 23:3?20. DOI:10. 1038/s41580?021?00418?x.
[16]Liu C, von Brunn A, Zhu D. Cyclophilin A and CD147:novel therapeutic targets for the treatment of COVID?19[J]. Med Drug Discov, 2020, 7:100056.DOI:10. 1016/j. medidd. 2020. 100056.
[17]Wang S, Qiu Z, Hou Y, et al. AXL is a candidate receptor for SARS?CoV?2 that promotes infection of pulmonary and bronchial epithelial cells[J]. Cell Res,2021, 31(2):126?140. DOI:10. 1038/s41422?020?00460?y.
[18]Ibrahim IM, Abdelmalek DH, Elshahat ME, et al.COVID?19 spike?host cell receptor GRP78 binding site prediction[J]. J Infect, 2020, 80(5):554?562. DOI:10. 1016/j. jinf. 2020. 02. 026.
[19]Louis DW, Saad M, Vijayakumar S, et al. The cardiovascular manifestations of COVID?19[J]. Cardiol Clin, 2022, 40(3):277?285. DOI:10. 1016/j.ccl. 2022. 03. 001.
[20]Chimenti C, Magnocavallo M, Ballatore F, et al.Prevalence and clinical implications of COVID?19myocarditis[J]. Card Electrophysiol Clin, 2022, 14(1):53?62. DOI:10. 1016/j. ccep. 2021. 11. 001.
[21]Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID?19 in China[J]. Clin Res Cardiol, 2020, 109(5):531?538. DOI:10. 1007/s00392?020?01626?9.
[22]Abate SM, Mantefardo B, Nega S, et al. Global burden of acute myocardial injury associated with COVID?19:a systematic review, meta?analysis, and meta?regression[J]. Ann Med Surg, 2021, 68:102594. DOI:10. 1016/j. amsu. 2021. 102594.
[23]Eberhardt N, Noval MG, Kaur R, et al. SARS?CoV?2infection triggers pro?atherogenic inflammatory responses in human coronary vessels[J]. Nat Cardiovasc Res, 2023, 2:899?916. DOI:10. 1038/s44161?023?00336?5.
[24]Almamlouk R, Kashour T, Obeidat S, et al. COVID?19?Associated cardiac pathology at the postmortem evaluation:a collaborative systematic review[J]. Clin Microbiol Infect, 2022, 28(8):1066?1075. DOI:10. 1016/j. cmi. 2022. 03. 021.
[25]国家老年医学中心,中国老年医学学会心电与心功能分会,北京医学会心血管病学分会影像学组,等.新型冠状病毒感染相关心肌损伤、心肌炎和感染后状态管理专家共识(第二版)[J].中国循环杂志,2023, 38(2):105?115.
[26]Maitz T, Parfianowicz D, Vojtek A, et al. COVID?19cardiovascular connection:a review of cardiac manifestations in COVID?19 infection and treatment modalities[J]. Curr Probl Cardiol, 2023, 48(8):101186. DOI:10. 1016/j. cpcardiol. 2022. 101186.
[27]Jafari?Oori M, Moradian ST, Ebadi A, et al. Incidence of cardiac complications following COVID?19 infection:an umbrella meta?analysis study[J]. Heart Lung, 2022,52:136?145. DOI:10. 1016/j. hrtlng. 2022. 01. 001.
[28]Yang K, Liu J, Gong Y, et al. Bioinformatics and systems biology approaches to identify molecular targeting mechanism influenced by COVID?19 on heart failure[J]. Front Immunol, 2022, 13:1052850. DOI:10. 3389/fimmu. 2022. 1052850.
[29]Alivernini S, Gremese E, McSharry C, et al.MicroRNA?155?at the critical interface of innate and adaptive immunity in arthritis[J]. Front Immunol,2017, 8:1932. DOI:10. 3389/fimmu. 2017. 01932.
[30]Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis[J]. Cell Signal, 2021, 77:109826. DOI:10. 1016/j.cellsig. 2020. 109826.
[31]Keikha R, Hashemi?Shahri SM, Jebali A. The relative expression of miR?31, miR?29, miR?126, and miR?17and their mRNA targets in the serum of COVID?19patients with different grades during hospitalization[J].Eur J Med Res, 2021, 26(1):75. DOI:10. 1186/s40001?021?00544?4.
[32]Gao LJ, He ZM, Li YY, et al. Role of OAS gene family in COVID?19 induced heart failure[J]. J Transl Med, 2023, 21(1):212. DOI:10. 1186/s12967?023?04058?x.
[33]Zhang G, Cui X, Zhang L, et al. Uncovering the genetic links of SARS?CoV?2 infections on heart failure co?morbidity by a systems biology approach[J]. ESC Heart Fail, 2022, 9(5):2937?2954. DOI:10. 1002/ehf2. 14003.
[34]Aboudounya MM, Heads RJ. COVID?19 and toll?like receptor 4(TLR4):SARS?CoV?2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation[J]. Mediators Inflamm, 2021, 2021:8874339. DOI:10. 1155/2021/8874339.
[35]Krause PR, Gruber MF. Emergency use authorization of covid vaccines?safety and efficacy follow?up considerations[J]. N Engl J Med, 2020, 383(19):e107. DOI:10. 1056/nejmp2031373.
[36]Zhang F, Yu C, Xu W, et al. Identification of critical genes and molecular pathways in COVID?19 myocarditis and constructing gene regulatory networks by bioinformatic analysis[J/OL]. PLoS One, 2022, 17(6):e0269386. DOI:10. 1371/journal. pone. 0269386.
[37]Marketou M, Kontaraki J, Patrianakos A, et al.Peripheral blood MicroRNAs as potential biomarkers of myocardial damage in acute viral myocarditis[J]. Genes(Basel), 2021, 12(3):420. DOI:10. 3390/genes12030420.
[38]Hossein Heydari A, Ghaffari S, Khani Z, et al. MiR?21and Tocilizumab interactions improve COVID?19myocarditis outcomes[J]. Ther Adv Cardiovasc Dis,2023, 17:17539447231182548. DOI:10. 1177/17539447231182548.
[39]AbdelMassih A, Agha H, El?Saiedi S, et al. The role of miRNAs in viral myocarditis, and its possible implication in induction of mRNA?based COVID?19vaccines?induced myocarditis[J]. Bull Natl Res Cent,2022, 46(1):267. DOI:10. 1186/s42269?022?00955?1.
[40]Ong J, Woldhuis RR, Boudewijn IM, et al. Age?related gene and miRNA expression changes in airways of healthy individuals[J]. Sci Rep, 2019, 9:3765.DOI:10. 1038/s41598?019?39873?0.
[41]Bikdeli B, Madhavan MV, Jimenez D, et al. Global COVID?19 thrombosis collaborative group, endorsed by the ISTH, NATF, ESVM, and the IUA, supported by the ESC working group on pulmonary circulation and right ventricular function. COVID?19 and thrombotic or thromboembolic disease:Implications for prevention,antithrombotic therapy, and follow?up:JACC state?of?the?art review[J]. J Am Coll Cardiol, 2020, 75(23):2950?2973. DOI:10. 1016/j. jacc. 2020. 04. 031.
[42]Elsoukkary SS, Mostyka M, Dillard A, et al. Autopsy findings in 32 patients with COVID?19:a single?institution experience[J]. Pathobiology, 2021, 88(1):56?68. DOI:10. 1159/000511325.
[43]McFadyen JD, Stevens H, Peter K. The emerging threat of(micro)thrombosis in COVID?19 and its therapeutic implications[J]. Circ Res, 2020, 127(4):571?587. DOI:10. 1161/circresaha. 120. 317447.
[44]Wang Y, Liu C, Wei W, et al. Predictive value of circulating coagulation related microRNAs expressions for major adverse cardiac and cerebral event risk in patients undergoing continuous ambulatory peritoneal dialysis:a cohort study[J]. J Nephrol, 2020, 33(1):157?165. DOI:10. 1007/s40620?019?00626?x.
[45]Eyileten C, Wicik Z, Sim?es SN, et al. Thrombosis?related circulating miR?16?5p is associated with disease severity in patients hospitalised for COVID?19[J].RNA Biol, 2022, 19(1):963?979. DOI:10. 1080/15476286. 2022. 2100629.
[46]Farooqui AA, Farooqui T, Sun GY, et al. COVID?19, blood lipid changes, and thrombosis[J].Biomedicines, 2023, 11(4):1181. DOI:10. 3390/biomedicines11041181.
[47]Martínez?Fleta P, Vera?ToméP, Jiménez?Fernández M, et al. A differential signature of circulating miRNAs and cytokines between COVID?19 and community?acquired pneumonia uncovers novel physiopathological mechanisms of COVID?19[J]. Front Immunol, 2022,12:815651. DOI:10. 3389/fimmu. 2021. 815651.
[48]Liang Y, Fang D, Gao X, et al. Circulating microRNAs as emerging regulators of COVID?19[J].Theranostics, 2023, 13(1):125?147. DOI:10. 7150/thno. 78164.
[49]Ackermann M, Verleden SE, Kuehnel M, et al.Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid?19[J]. N Engl J Med, 2020, 383(2):120?128. DOI:10. 1056/nejmoa2015432.
[50]Sabbatinelli J, Giuliani A, Matacchione G, et al.Decreased serum levels of the inflammaging marker miR?146a are associated with clinical non?response to tocilizumab in COVID?19 patients[J]. Mech Ageing Dev, 2021, 193:111413. DOI:10. 1016/j.mad. 2020. 111413.
[51]Zhang T, Guo J, Gu J, et al. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments[J].Oncol Rep, 2019, 41(1):279?291. DOI:10. 3892/or. 2018. 6840.
[52]Sahu A, Jha PK, Prabhakar A, et al. MicroRNA?145impedes Thrombus formation via targeting tissue factor in venous thrombosis[J]. EBioMedicine, 2017, 26:175?186. DOI:10. 1016/j. ebiom. 2017. 11. 022.
[53]Gambardella J, Kansakar U, Sardu C, et al. Exosomal miR?145 and miR?885 Regulate Thrombosis in COVID?19[J]. J Pharmacol Exp Ther, 2023, 384(1):109?115. DOI:10. 1124/jpet. 122. 001209.
[54]Zhang L, Feng X, Zhang D, et al. Deep vein thrombosis in hospitalized patients with COVID?19 in Wuhan, China:Prevalence, risk factors, and outcome[J]. Circulation, 2020, 142(2):114?128. DOI:10. 1161/CIRCULATIONAHA. 120. 046702.
[55]Kochi AN, Tagliari AP, Forleo GB, et al. Cardiac and arrhythmic complications in patients with COVID?19[J]. J Cardiovasc Electrophysiol, 2020, 31(5):1003?1008. DOI:10. 1111/jce. 14479.
[56]Wollborn J, Karamnov S, Fields KG, et al. COVID?19increases the risk for the onset of atrial fibrillation in hospitalized patients[J]. Sci Rep, 2022, 12:12014.DOI:10. 1038/s41598?022?16113?6.
[57]Colon CM, Barrios JG, Chiles JW, et al. Atrial arrhythmias in COVID?19 patients[J]. JACC Clin Electrophysiol, 2020, 6(9):1189?1190. DOI:10. 1016/j. jacep. 2020. 05. 015.
[58]Coromilas EJ, Kochav S, Goldenthal I, et al.Worldwide survey of COVID?19?associated arrhythmias[J]. Circ Arrhythm Electrophysiol, 2021, 14(3):e009458. DOI:10. 1161/CIRCEP. 120. 009458.
[59]Niu S, Xu L, Yuan Y, et al. Effect of down?regulated miR?15b?5p expression on arrhythmia and myocardial apoptosis after myocardial ischemia reperfusion injury in mice[J]. Biochem Biophys Res Commun, 2020, 530(1):54?59. DOI:10. 1016/j. bbrc. 2020. 06. 111.
[60]Satoh M, Minami Y, Takahashi Y, et al. Expression of microRNA?208 is associated with adverse clinical outcomes in human dilated cardiomyopathy[J]. J Card Fail, 2010, 16(5):404?410. DOI:10. 1016/j.cardfail. 2010. 01. 002.
[61]Bautista?Becerril B, Pérez?Dimas G, Sommerhalder?Nava PC, et al. miRNAs, from evolutionary junk to possible prognostic markers and therapeutic targets in COVID?19[J]. Viruses, 2021, 14(1):41. DOI:10. 3390/v14010041.
[62]Li N, Artiga E, Kalyanasundaram A, et al. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node[J]. Sci Rep, 2021, 11:19328.DOI:10. 1038/s41598?021?98580?x.
[63]陈瑞哲.基于生物信息学探讨心房颤动和COVID?19潜在相关机制[D].山西医科大学,2023.
[64]Arghiani N, Nissan T, Matin MM. Role of microRNAs in COVID?19 with implications for therapeutics[J]. Biomed Pharmacother, 2021, 144:112247. DOI:10. 1016/j. biopha. 2021. 112247.
[65]Azevedo RB, Botelho BG, de Hollanda JVG, et al.Covid?19 and the cardiovascular system:a comprehensive review[J]. J Hum Hypertens, 2021,35:4?11. DOI:10. 1038/s41371?020?0387?4.
[66]Self WH, Semler MW, Leither LM, et al. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID?19:a randomized clinical trial[J]. JAMA, 2020, 324(21):2165?2176.DOI:10. 1001/jama. 2020. 22240.
[67]Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system:a literature review[J]. Cardiovasc Toxicol, 2022, 22(3):268?272.DOI:10. 1007/s12012?021?09703?9.
[68]Saeedi?Boroujeni A, Purrahman D, Shojaeian A, et al.Progranulin(PGRN)as a regulator of inflammation and a critical factor in the immunopathogenesis of cardiovascular diseases[J]. J Inflamm(Lond), 2023,20(1):1. DOI:10. 1186/s12950?023?00327?0.
[69]Hundertmark MJ, Adler A, Antoniades C, et al.Assessment of cardiac energy metabolism, function, and physiology in patients with heart failure taking empagliflozin:The randomized, controlled EMPA?VISION trial[J]. Circulation, 2023, 147(22):1654?1669.DOI:10. 1161/CIRCULATIONAHA. 122. 062021.
[70]Kounis NG, Gogos C, de Gregorio C, et al.“When,”“where,” and “how” of SARS?CoV?2 infection affects the human cardiovascular system:a narrative review[J]. Balkan Med J, 2024, 41(1):7?22. DOI:10. 4274/balkanmedj. galenos. 2023. 2023?10?25.
[71]Aleshcheva G, Baumeier C, Harms D, et al.MicroRNAs as novel biomarkers and potential therapeutic options for inflammatory cardiomyopathy[J]. ESC Heart Fail, 2023, 10(6):3410?3418. DOI:10. 1002/ehf2. 14523.
[72]Zhang R, Chen X, Zuo W, et al. Inflammatory activation and immune cell infiltration are main biological characteristics of SARS?CoV?2 infected myocardium[J]. Bioengineered, 2022, 13(2):2486?2497. DOI:10. 1080/21655979. 2021. 2014621.
[73]Lim SH, Ju HJ, Han JH, et al. Autoimmune and autoinflammatory connective tissue disorders following COVID?19[J]. JAMA Netw Open, 2023, 6(10):e2336120.DOI:10. 1001/jamanetworkopen. 2023. 36120.
[74]Gutmann C, Khamina K, Theofilatos K, et al.Association of cardiometabolic microRNAs with COVID?19 severity and mortality[J]. Cardiovasc Res, 2022,118(2):461?474. DOI:10. 1093/cvr/cvab338.
[75]Mahesh G, Biswas R. MicroRNA?155:a master regulator of inflammation[J]. J Interferon Cytokine Res, 2019, 39(6):321?330. DOI:10. 1089/jir. 2018. 0155.
[76]Garg A, Seeliger B, Derda AA, et al. Circulating cardiovascular microRNAs in critically ill COVID?19patients[J]. Eur J Heart Fail, 2021, 23(3):468?475.DOI:10. 1002/ejhf. 2096.
[77]Keewan E, Naser SA. MiR?146a rs2910164 G> C polymorphism modulates Notch?1/IL?6 signaling during infection:a possible risk factor for Crohn’s disease[J].Gut Pathog, 2020, 12:48. DOI:10. 1186/s13099?020?00387?0.
[78]Roganovi?J. Downregulation of microRNA?146a in diabetes, obesity and hypertension may contribute to severe COVID?19[J]. Med Hypotheses, 2021, 146:110448. DOI:10. 1016/j. mehy. 2020. 110448.
[79]Aziz M, Fatima R, Assaly R. Elevated interleukin?6and severe COVID?19:a meta?analysis[J]. J Med Virol, 2020, 92(11):2283?2285. DOI:10. 1002/jmv. 25948.
[80]Vasuri F, Ciavarella C, Collura S, et al. Adventitial microcirculation is a major target of SARS?CoV?2?mediated vascular inflammation[J]. Biomolecules,2021, 11(7):1063. DOI:10. 3390/biom11071063.
[81]López?Hernández Y, Monárrez?Espino J, López DAG,et al. The plasma metabolome of long COVID patients two years after infection[J]. Sci Rep, 2023, 13(1):12420. DOI:10. 1038/s41598?023?39049?x.
[82]Moatar AI, Chis AR, Marian C, et al. Gene network analysis of the transcriptome impact of SARS?CoV?2interacting microRNAs in COVID?19 disease[J]. Int J Mol Sci, 2022, 23(16):9239. DOI:10. 3390/ijms23169239.
[83]Ramachandran K, Maity S, Muthukumar AR, et al.SARS?CoV?2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics[J].iScience, 2022, 25(1):103722. DOI:10. 1016/j.isci. 2021. 103722.
[84]Purohit PK, Edwards R, Tokatlidis K, et al. MiR?195regulates mitochondrial function by targeting mitofusin?2in breast cancer cells[J]. RNA Biol, 2019, 16(7):918?929. DOI:10. 1080/15476286. 2019. 1600999.
[85]Moatar AI, Chis AR, Romanescu M, et al. Plasma miR?195?5p predicts the severity of Covid?19 in hospitalized patients[J]. Sci Rep, 2023, 13:13806.DOI:10. 1038/s41598?023?40754?w.
[86]McDonald JT, Enguita FJ, Taylor D, et al. Role of miR?2392 in driving SARS?CoV?2 infection[J]. Cell Rep, 2021, 37(3):109839. DOI:10. 1016/j.celrep. 2021. 109839.
[87]Yasukawa K, Kinoshita D, Yaku K, et al. The microRNAs miR?302b and miR?372 regulate mitochondrial metabolism via the SLC25A12transporter, which controls MAVS?mediated antiviral innate immunity[J]. J Biol Chem, 2020, 295(2):444?457. DOI:10. 1074/jbc. RA119. 010511.
[88]Iessi E, Cittadini C, Anticoli S, et al. Sex differences in antiviral immunity in SARS?CoV?2 infection:Mitochondria and mitomiR come into view[J]. Acta Physiol(Oxf), 2021, 231(2):e13571. DOI:10. 1111/apha. 13571.
[89]Farshidfar F, Koleini N, Ardehali H. Cardiovascular complications of COVID?19[J]. JCI Insight, 2021, 6(13):148980. DOI:10. 1172/jci. insight. 148980.
[90]Aras Júnior R, Dur?es A, Roever L, et al. The impact of COVID?19 on the cardiovascular system[J]. Rev Assoc Med Bras(1992), 2021, 67Suppl 1(Suppl 1):163?167. DOI:10. 1590/1806?9282. 67.
[91]Huang L, Zhao P, Tang D, et al. Cardiac involvement in patients recovered from COVID?2019 identified using magnetic resonance imaging[J]. JACC Cardiovasc Imag, 2020, 13(11):2330?2339. DOI:10. 1016/j.jcmg. 2020. 05. 004.
[92]Grosse C, Grosse A, Salzer HJF, et al. Analysis of cardiopulmonary findings in COVID?19 fatalities:High incidence of pulmonary artery thrombi and acute suppurative bronchopneumonia[J]. Cardiovasc Pathol,2020, 49:107263.DOI:10. 1016/j.carpath. 2020. 107263.
[93]Kura B, Kalocayova B, Devaux Y, et al. Potential Clinical Implications of miR?1 and miR?21 in Heart Disease and Cardioprotection[J]. Int J Mol Sci, 2020,21(3):E700. DOI:10. 3390/ijms21030700.
[94]de GONZALO?CALVO D, Benítez ID, Pinilla L, et al. Circulating microRNA profiles predict the severity of COVID?19 in hospitalized patients[J]. Transl Res,2021, 236:147?159. DOI:10. 1016/j.trsl. 2021. 05. 004.
[95]Surina S, Fontanella RA, Scisciola L, et al. MiR?21 in human cardiomyopathies[J]. Front Cardiovasc Med,2021, 8:767064. DOI:10. 3389/fcvm. 2021. 767064.
[96]Izzo C, Visco V, Gambardella J, et al. Cardiovascular implications of microRNAs in coronavirus disease 2019[J]. J Pharmacol Exp Ther, 2023, 384(1):102?108.DOI:10. 1124/jpet. 122. 001210.
[97]Fayyad?Kazan M, Makki R, Skafi N, et al. Circulating miRNAs:Potential diagnostic role for coronavirus disease 2019(COVID?19)[J]. Infect Genet Evol,2021, 94:105020.DOI:10. 1016/j.meegid. 2021. 105020.
[98]Nahand JS, Karimzadeh MR, Nezamnia M, et al. The role of miR?146a in viral infection[J]. IUBMB Life,2020, 72(3):343?360.
[99]Curcio R, Poli G, Fabi C, et al. Exosomal miR?17?5p,miR?146a?3p, and miR?223?3p correlate with radiologic sequelae in survivors of COVID?19?related acute respiratory distress syndrome[J]. Int J Mol Sci, 2023,24(17):13037. DOI:10. 3390/ijms241713037.
[100] Puntmann VO, Carerj ML, Wieters I, et al.Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease2019(COVID?19)[J]. JAMA Cardiol, 2020, 5(11):1265?1273. DOI:10. 1001/jamacardio. 2020. 3557.
[101] Altman NL, Berning AA, Mann SC, et al.Vaccination?associated myocarditis and myocardial injury[J]. Circ Res, 2023, 132(10):1338?1357. DOI:10. 1161/circresaha. 122. 321881.
[102]Liao Z, Wang C, Tang X, et al. Human transferrin receptor can mediate SARS?CoV?2 infection[J]. Proc Natl Acad Sci U S A, 2024, 121(10):e2317026121.DOI:10. 1073/pnas. 2317026121.
[103]马明仁,马凌,刘燕,等. SARS?CoV?2靶向CypA/CD147受体途径诱导心肌细胞凋亡[J/OL].西安交通大学学报(医学版),1?9[2024?04?27]. http://kns.cnki.net/kcms/detail/61. 1399.R. 20240425. 1103. 002. html.
[104]李丹,黄宇坤,高小玲. RNA药物递送研究进展[J].药学学报,2023, 58(3):469?482.
[105] Forterre A, Komuro H, Aminova S, et al. A comprehensive review of cancer microRNA therapeutic delivery strategies[J]. Cancers(Basel), 2020, 12(7):E1852. DOI:10. 3390/cancers12071852.
[106]Picon MA, Wang L, Da Fonseca Ferreira A, et al.Extracellular vesicles as delivery systems in disease therapy[J]. Int J Mol Sci, 2023, 24(24):17134.DOI:10. 3390/ijms242417134.

基本信息:

DOI:10.13242/j.cnki.bingduxuebao.004568

中图分类号:R511;R54

引用信息:

[1]马明仁,焦丕奇,刘明浩等.循环miRNAs在COVID-19并发心血管系统疾病中的研究进展[J].病毒学报,2024,40(05):1137-1150.DOI:10.13242/j.cnki.bingduxuebao.004568.

基金信息:

甘肃省自然科学基金(项目号:GSWSKY2023-47),题目:SARS-CoV-2 S蛋白通CyPa/CD147激活TLR3信号通路诱发心肌炎的机制研究;甘肃省自然科学基金(项目号:21JR1RA181),题目:COVID-19靶向CyPa/CD147信号通路诱导心肌细胞凋亡机制研究~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文